Advertisement

Preparation and Characterization of UV-absorbing PVDF Membranes via Pre-irradiation Induced Graft Polymerization

  • Li Dong
  • Xiang-Dong Liu
  • Zheng-Rong Xiong
  • De-Kun Sheng
  • Yan Zhou
  • Yu-Ming Yang
Article
  • 6 Downloads

Abstract

Herein, excellent UV-absorbing poly(vinylidene fluoride) (PVDF) membranes were fabricated through the pre-irradiation induced graft polymerization method. The PVDF chains irradiated with 60Co γ-ray were modified with the polymerizable UV absorber 2-[2-hydroxy-5-[2-(methacryloyloxy)ethyl]phenyl]-2H-benzotriazole (RUVA-93). The influences of irradiation dose and monomer concentration on the prepared PVDF-g-PRUVA-93 membranes were investigated, and the optimal condition was eventually obtained. The chemical structures of the films were studied by 1H-NMR, FTIR, and XRD. UV light transmittance and DSC tests were used to characterize the UV-absorbing performance and thermal property of the PVDF films before and after modification. The results proved that the PRUVA-93 side chains were successfully incorporated into the PVDF main chains and the obtained PVDF-g-PRUVA-93 films possessed remarkable UV-absorbing property. The modified membrane made under the optimized experiment condition could completely block the UV light in the range of 200−387 nm. Additionally, the transmittance of the PVDF-g-PRUVA-93 film could be reduced to 0.04% in 280−320 nm, where the light irradiation could damage polymer materials most seriously.

Keywords

PVDF membrane Modification Irradiation Grafting UV-absorbing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kang, G. D.; Cao, Y. M. Application and modification of poly(vinylidene fluoride) (PVDF) membranes—A review. J. Membr. Sci. 2014, 463, 145–165.CrossRefGoogle Scholar
  2. 2.
    Otitoju, T. A.; Ahmad, A. L.; Ooi, B. S. Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: A performance review. J. Water. Process. Eng. 2016, 14, 41–59.CrossRefGoogle Scholar
  3. 3.
    Rahimpour, A.; Madaeni, S, S.; Zereshki, S.; Mansourpanah, Y. Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting. Appl. Surf. Sci. 2009, 255, 7455–7461.CrossRefGoogle Scholar
  4. 4.
    Zuo, J. H.; Cheng, P.; Chen, X. F.; Yan, X.; Guo, Y. J.; Lang, W. Z. Ultrahigh flux of polydopamine-coated PVDF membranes quenched in air via thermally induced phase separation for oil/water emulsion separation. Sep. Purif. Technol. 2018, 192, 348–359.CrossRefGoogle Scholar
  5. 5.
    Wu, X. N.; Zhao, B.; Wang, L.; Zhang, Z. H.; Zhang, H. W.; Zhao, X. H.; Guo, X. F. Hydrophobic PVDF/graphene hybrid membrane for CO2 absorption in membrane contactor. J. Membr. Sci. 2016, 520, 120–129.CrossRefGoogle Scholar
  6. 6.
    Ji, J.; Liu, F.; Awanis Hashim, N.; Moghareh Abed, M. R.; Li, K. Poly(vinylidene fluoride) (PVDF) membranes for fluid separation. Reac. Funct. Polym. 2015, 86, 134–153.CrossRefGoogle Scholar
  7. 7.
    Zhao, C. Q.; Xu, X. C.; Chen, J.; Yang, F. L. Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. J. Environ. Chem. Eng. 2013, 1, 349–354.CrossRefGoogle Scholar
  8. 8.
    Chen, L. F.; Hou, Z. C.; Lu, X. F.; Chen, P.; Liu, Z. Y.; Shen, L. G.; Bian, X. K.; Qin, Q. Antifouling microfiltration membranes prepared from poly(vinylidene fluoride)-graft-poly(Nvinyl pyrrolidone) powders synthesized via pre-irradiation induced graft polymerization. J. Appl. Polym. Sci. 2013, 128, 3949–3956.CrossRefGoogle Scholar
  9. 9.
    Zhu, Z. Y.; Jiang, J. L.; Wang, X. D.; Huo, X. N.; Xu, Y. W.; Li, Q. Q.; Wang, L. Improving the hydrophilic and antifouling properties of polyvinylidene fluoride membrane by incorporation of novel nanohybrid GO@SiO2 particles. Chem. Eng. J. 2017, 314, 266–276.CrossRefGoogle Scholar
  10. 10.
    Wu, C. R.; Tang, W. Y.; Zhang, J. H.; Liu, S. H.; Wang, Z. Y.; Wang, X.; Lu, X. L. Preparation of super-hydrophobic PVDF membrane for MD purpose via hydroxyl induced crystallization-phase inversion. J. Membr. Sci. 2017, 543, 288–300.CrossRefGoogle Scholar
  11. 11.
    Yang, C.; Li, X. M.; Gilron, J.; Kong, D. F.; Yin, Y.; Oren, Y.; Linder, C.; He, T. CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation. J. Membr. Sci. 2014, 456, 155–161.CrossRefGoogle Scholar
  12. 12.
    Chen, X.; He, Y.; Shi, C. C.; Fu, W. G.; Bi, S. Y.; Wang, Z. Y.; Chen, L. Temperature-and pH-responsive membranes based on poly(vinylidene fluoride) functionalized with microgels. J. Membr. Sci. 2014, 469, 447–457.CrossRefGoogle Scholar
  13. 13.
    Sun, C. G.; Feng, X. S. Enhancing the performance of PVDF membranes by hydrophilic surface modification via amine treatment. Sep. Purif. Technol. 2017, 185, 94–102.CrossRefGoogle Scholar
  14. 14.
    Cai, T.; Neoh, K. G.; Kang, E. T. Surface-functionalized and surface-functionalizable poly(vinylidene fluoride) graft copolymer membranes via click chemistry and atom transfer radical polymerization. Langmuir 2011, 27, 2936–2945.CrossRefGoogle Scholar
  15. 15.
    Xu, L. Q.; Chen, J. C.; Wang, R.; Neoh, K. G.; Kang, E. T.; Fu, G. D. A poly(vinylidene fluoride)-graft-poly(dopamine acrylamide) copolymer for surface functionalizable membranes. RSC Adv. 2013, 3, 25204–25214.CrossRefGoogle Scholar
  16. 16.
    Xu, C. Q.; Huang, W.; Zhou, Y. F.; Yan, D. Y.; Chen, S. T.; Huang, H. Graft copolymerization of N-vinyl-2-pyrrolidone onto pre-irradiated poly(vinylidene fluoride) powder. Radiat. Phys. Chem. 2012, 81, 426–431.CrossRefGoogle Scholar
  17. 17.
    Zhao, X. Z.; Xuan, H. X.; Qin, A. W.; Liu, D. P.; He, C. J. Improved antifouling property of PVDF ultrafiltration membrane with plasma treated PVDF powder. RSC Adv. 2015, 5, 64526–64533.CrossRefGoogle Scholar
  18. 18.
    Liu, J.; Shen, X.; Zhao, Y. P.; Chen, L. Acryloylmorpholinegrafted PVDF membrane with improved protein fouling resistance. Ind. Eng. Chem. Res. 2013, 52, 18392–18400.CrossRefGoogle Scholar
  19. 19.
    Dong, L.; Liu, X. D.; Xiong, Z. R.; Sheng, D. K.; Zhou, Y.; Lin, C. H.; Yang, Y. M. Design of UV-absorbing PVDF membrane via surface-initiated AGET ATRP. Appl. Surf. Sci. 2018, 435, 680–686.CrossRefGoogle Scholar
  20. 20.
    Dong, L.; Liu, X. D.; Xiong, Z. R.; Sheng, D. K.; Lin, C. H.; Zhou, Y.; Yang, Y. M. Fabrication of highly efficient ultraviolet absorbing PVDF membranes via surface polydopamine deposition. J. Appl. Polym. Sci. 2018, 135, 45746.CrossRefGoogle Scholar
  21. 21.
    Wang, G. R.; Xu, S. M.; Xia, C. H.; Yan, D. P.; Lin, Y. J.; Wei, M. Fabrication of host-guest UV-blocking materials by intercalation of fluorescent anions into layered double hydroxides. RSC Adv. 2015, 5, 23708–23714.CrossRefGoogle Scholar
  22. 22.
    Cohen, S.; Haham, H.; Pellach, M.; Margel, S. Design of UVabsorbing polypropylene films with polymeric benzotriaziole based nano-and microparticle coatings. ACS Appl. Mater. Interfaces 2016, 9, 868–875.CrossRefGoogle Scholar
  23. 23.
    Hattori, H.; Ide, Y.; Sano, T. Microporous titanate nanofibers for highly efficient UV-protective transparent coating. J. Mater. Chem. A 2014, 2, 16381–16388.CrossRefGoogle Scholar
  24. 24.
    Kainulainen, T. P.; Sirviö, J. A.; Sethi, J.; Hukka, T. I.; Heiskanen, J. P. UV-blocking synthetic biopolymer from biomass-based bifuran diester and ethylene glycol. Macromolecules 2018, 51, 1822–1829.CrossRefGoogle Scholar
  25. 25.
    Lizundia, E.; Ruiz-Rubio, L.; Vilas, J. L.; León, L. M. Poly(Llactide)/ZnO nanocomposites as efficient UV-shielding coatings for packaging applications. J. Appl. Polym. Sci. 2016, 133, 42426.CrossRefGoogle Scholar
  26. 26.
    Feng, Y.; Zhang, J. M.; He, J. S.; Zhang, J. Transparent cellulose/polyhedral oligomeric silsesquioxane nanocomposites with enhanced UV-shielding properties. Carbohyd. Polym. 2016, 147, 171–177.CrossRefGoogle Scholar
  27. 27.
    Ge, F. J.; Ding, Y. Y.; Yang, L.; Huang, Y.; Jiang, L.; Dan, Y. Effect of the content and distribution of ultraviolet absorbing groups on the UV protection and degradation of polylactide films. RSC Adv. 2015, 5, 70473–70481.CrossRefGoogle Scholar
  28. 28.
    Du, J. Z.; Sun, H. Polymer/TiO2 hybrid vesicles for excellent UV screening and effective encapsulation of antioxidant agents. ACS Appl. Mater. Interfaces 2014, 6, 13535–13541.CrossRefGoogle Scholar
  29. 29.
    Senatova, S. I.; Senatov, F. S.; Kuznetsov, D. V.; Stepashkin, A. A.; Issi, J. P. Effect of UV-radiation on structure and properties of PP nanocomposites. J. Alloy. Compd. 2017, 707, 304–309.CrossRefGoogle Scholar
  30. 30.
    Woo, H.; Char, K. Transparent organosilicate hybrid films with thermally insulating and UV-blocking properties based on silica/titania hybrid hollow colloidal shells. Macromol. Res. 2013, 21, 1004–1010.CrossRefGoogle Scholar
  31. 31.
    Aguirre, M.; Paulis, M.; Leiza, J. R. UV screening clear coats based on encapsulated CeO2 hybrid latexes. J. Mater. Chem. A 2013, 1, 3155–3162.CrossRefGoogle Scholar
  32. 32.
    Zhao, Y.; Xu, Z. G.; Wang, X. G.; Lin, T. Superhydrophobic and UV-blocking cotton fabrics prepared by layer-by-layer assembly of organic UV absorber intercalated layered double hydroxides. Appl. Surf. Sci. 2013, 286, 364–370.CrossRefGoogle Scholar
  33. 33.
    Zhang, Y.; Han, J. R.; Wu, S. Y.; Qi, Z. G.; Xu, J.; Guo, B. H. Synthesis, physical properties and photodegradation of functional poly(butylene succinate) covalently linking UV stabilizing moieties in molecular chains. Colloid. Surface. A 2017, 524, 160–168.CrossRefGoogle Scholar
  34. 34.
    Lei, H. B.; He, D. L.; Guo, Y. N.; Tang, Y. N.; Huang, H. Q. Synthesis and characterization of UV-absorbing fluorine-silicone acrylic resin polymer. Appl. Surf. Sci. 2018, 442, 71–77.CrossRefGoogle Scholar
  35. 35.
    Dong, L.; Liu, X. D.; Xiong, Z. R.; Sheng, D. K.; Lin, C. H.; Zhou, Y.; Yang, Y. M. Preparation and characterization of functional poly(vinylidene fluoride) (PVDF) membranes with ultraviolet-absorbing property. Appl. Surf. Sci. 2018, 444, 497–504.CrossRefGoogle Scholar
  36. 36.
    Wang, Y.; Su, J.; Li, T.; Ma, P. M.; Bai, H. Y.; Xie, Y.; Chen, M. Q.; Dong, W. F. A novel UV-shielding and transparent polymer film: When bioinspired dopamine-melanin hollow nanoparticles join polymers. ACS Appl. Mater. Interfaces 2017, 9, 36281–36289.CrossRefGoogle Scholar
  37. 37.
    de Moraes, A. C. M.; Andrade, P. F.; de Faria, A. F.; Simões, M. B.; Salomão, F. C. C. S.; Barros, E. B.; Goncalves, M. C.; Alves, O. L. Fabrication of transparent and ultraviolet shielding composite films based on graphene oxide and cellulose acetate. Carbohyd. Polym. 2015, 123, 217–227.CrossRefGoogle Scholar
  38. 38.
    Wang, X. L.; Zhou, S. X.; Wu, L. M. Fabrication of Fe3+ doped Mg/Al layered double hydroxides and their application in UV light-shielding coatings. J. Mater. Chem. C 2014, 2, 5752–5758.CrossRefGoogle Scholar
  39. 39.
    Hess, S. C.; Permatasari, F. A.; Fukazawa, H.; Schneider, E. M.; Balgis, R.; Ogi, T.; Okuyama, K.; Stark, W. J. Direct synthesis of carbon quantum dots in aqueous polymer solution: One-pot reaction and preparation of transparent UV-blocking films. J. Mater. Chem. A 2017, 5, 5187–5194.CrossRefGoogle Scholar
  40. 40.
    Wang, Y.; Li, T.; Ma, P. M.; Bai, H. Y.; Xie, Y.; Chen, M. Q.; Dong, W. F. Simultaneous enhancements of UV-shielding properties and photostability of poly(vinyl alcohol) via incorporation of sepia eumelanin. ACS Sustain. Chem. Eng. 2016, 4, 2252–2258.CrossRefGoogle Scholar
  41. 41.
    Fernandes, S. C. M.; Alonso-Varona, A.; Palomares, T.; Zubillaga, V.; Labidi, J.; Bulone, V. Exploiting mycosporines as natural molecular sunscreens for the fabrication of UV-absorbing green materials. ACS Appl. Mater. Interfaces 2015, 7, 16558–16564.CrossRefGoogle Scholar
  42. 42.
    Rastogi, R. P.; Incharoensakdi, A. Analysis of UV-absorbing photoprotectant mycosporine-like amino acid (MAA) in the cyanobacterium Arthrospira sp. CU2556. Photochem. Photobiol. Sci. 2014, 13, 1016–1024.CrossRefGoogle Scholar
  43. 43.
    Nguyen, K. H.; Chollet-Krugler, M.; Gouault, N.; Tomasi, S. UV-protectant metabolites from lichens and their symbiotic partners. Nat. Prod. Rep. 2013, 30, 1490–1508.CrossRefGoogle Scholar
  44. 44.
    Cohen, S.; Kolitz-Domb, M.; Haham, H.; Gelber, C.; Margel, S. Engineering of UV-absorbing polypropylene films containing poly(2-(2'-hydroxy-5'-methacryloxyethylphenyl)-2H-benzotriazole) nanoparticles. Polym. Adv. Technol. 2017, 28, 897–904.CrossRefGoogle Scholar
  45. 45.
    Qin, Q.; Hou, Z. C.; Lu, X. F.; Bian, X. K.; Chen, L. F.; Shen, L. G.; Wang, S. Microfiltration membranes prepared from poly(N-vinyl-2-pyrrolidone) grafted poly(vinylidene fluoride) synthesized by simultaneous irradiation. J. Membr. Sci. 2013, 427, 303–310.CrossRefGoogle Scholar
  46. 46.
    Shin, I. H.; Hong, S.; Lim, S. J.; Son, Y. S.; Kim, T. H. Surface modification of PVDF membrane by radiation-induced graft polymerization for novel membrane bioreactor. J. Ind. Eng. Chem. 2017, 46, 103–110.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.University of Science and Technology of ChinaHefeiChina

Personalised recommendations