Chinese Journal of Polymer Science

, Volume 37, Issue 3, pp 243–252 | Cite as

Enhanced Crystallization Kinetics of PLLA by Ethoxycarbonyl Ionic Liquid Modified Graphene

  • Pei XuEmail author
  • Zhao-Pei Cui
  • Gang Ruan
  • Yun-Sheng DingEmail author


To investigate the performance of graphene (Gra) modified with ethoxycarbonyl ionic liquid (IL), chain mobility and crystallization kinetics of poly(L-lactic acid) (PLLA), a series of PLLA nanocomposites have been prepared using solution-cast method. IL can improve the dispersion of Gra in PLLA matrix and the samples containing IL have higher growth rate of PLLA spherulite than neat PLLA does. PLLA/IL/Gra and PLLA/2Gra exhibit the same relaxation strength and time of αN relaxation that corresponds to the longest normal mode motion at 110−140 °C. PLLA/IL/Gra shows a faster crystallization rate than PLLA/2Gra does, which might be attributed to the Gra-imidazolium cation interaction in IL modified Gra, the significant dispersion effect of IL at Gra surface, and the increase of nuclei density of PLLA/IL/Gra.


Ionic liquid Graphene PLLA Crystallization Dielectric behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 51603060) and the Fundamental Research Funds for the Central Universities (No. JZ2017YYPY0250).

Supplementary material

10118_2019_2192_MOESM1_ESM.pdf (173 kb)
Enhanced Crystallization Kinetics of PLLA by Ethoxycarbonyl Ionic Liquid Modified Graphene


  1. 1.
    Gupta, B.; Revagade, N.; Hilborn, J. Poly(lactic acid) fiber: An overview. Prog. Polym. Sci. 2007, 32, 455–482.CrossRefGoogle Scholar
  2. 2.
    Drumright, R. E.; Gruber, P. R.; Henton, D. E. Polylactic acid technology. Adv. Mater. 2000, 23, 1841–1846.CrossRefGoogle Scholar
  3. 3.
    Proikakis, C. S.; Mamouzelos, N. J.; Tarantili, P. A.; Andreopoulos, A. G. Swelling and hydrolytic degradation of poly(D, L-lactic acid) in aqueous solutions. Polym. Degrad. Stab. 2006, 91, 614–619.CrossRefGoogle Scholar
  4. 4.
    Hiljanen-Vainio, M.; Varpomaa, P.; Seppälä, J.; Törmälä, P. Modification of poly(L-lactides) by blending: Mechanical and hydrolytic behavior. Macromol. Chem. Phys. 1996, 197, 1503–1523.CrossRefGoogle Scholar
  5. 5.
    Aou, K.; Hsu, S. L.; Kleiner, L. W.; Tang, F. W. Roles of Conformational and configurational defects on the physical aging of amorphous poly(lactic acid). J. Phys. Chem. B 2007, 111, 12322–12327.CrossRefGoogle Scholar
  6. 6.
    Saeidlou, S.; Huneault, M. A.; Li, H.; Park, C. B. Poly(lactic acid) crystallization. Prog. Polym. Sci. 2012, 37, 1657–1677.CrossRefGoogle Scholar
  7. 7.
    Xing, Q.; Li, R. B.; Dong, X.; Zhang, X. Q.; Zhang, L. Y.; Wang, D. J. Phase morphology, crystallization behavior and mechanical properties of poly(L-lactide) toughened with biodegradable polyurethane: Effect of composition and hard segment ratio. Chinese J. Polym. Sci. 2015, 33, 1294–1304.CrossRefGoogle Scholar
  8. 8.
    Yang, G.; Gao, Q.; Ouyang, C. F.; Zheng, K. S.; Guo, Y. Influence of nucleating agent on PLLA crystalline and mechanical properties. Adv. Mater. Res. 2013, 624, 269–273.CrossRefGoogle Scholar
  9. 9.
    Xing, Q.; Li, R. B.; Dong, X.; Luo, F. L.; Kuang, X.; Wang, D. J.; Zhang, L. Y. Enhanced crystallization rate of poly(L-lactide) mediated by a hydrazide compound: Nucleating mechanism study. Macromol. Chem. Phys. 2015, 10, 1134–1145.CrossRefGoogle Scholar
  10. 10.
    Shi, H.; Chen, X.; Chen, W. K.; Pang, S. J.; Pan, L. S.; Xu, N.; Li, T. Crystallization behavior, heat resistance, and mechanical performances of PLLA/myo-inositol blends. J. Appl. Polym. Sci. 2017, 134, 44732.Google Scholar
  11. 11.
    Xing, Q.; Li, R. B.; Zhang, X. Q.; Dong, X.; Wang, D. J.; Zhang, L. Y. Tailoring crystallization behavior of poly(Llactide) with a low molecular weight aliphatic amide. Colloid Polym. Sci. 2015, 293, 3573–3583.CrossRefGoogle Scholar
  12. 12.
    Chen, L.; Hou, X.; Song, N.; Shi, L.; Ding, P. Cellulose/graphene bioplastic for thermal management: Enhanced isotropic thermally conductive property by three-dimensional interconnected graphene aerogel. Compos. Part A: Appl. S. 2018, 107, 189–196.CrossRefGoogle Scholar
  13. 13.
    Xu, J. Z.; Chen, T.; Yang, C. L.; Li, Z. M.; Mao, Y. M.; Zeng, B. Q.; Hsiao, B. S. Isothermal crystallization of poly(L-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 2010, 43, 5000–5008.CrossRefGoogle Scholar
  14. 14.
    Liang, Y. Y.; Yang, S.; Jiang, X.; Zhong, G. J.; Xu, J. Z.; Li, Z. M. Nucleation ability of thermally reduced graphene oxide for polylactide: Role of size and structural integrity. J. Phys. Chem. B 2015, 119, 4777–4787.CrossRefGoogle Scholar
  15. 15.
    Papageorgiou, G. Z.; Terzopoulou, Z.; Bikiaris, D.; Triantafyllidis, K. S.; Diamanti, E.; Gournis, D.; Pissis, P. Evaluation of the formed interface in biodegradable poly(L-lactic acid)/graphene oxide nanocomposites and the effect of nanofillers on mechanical and thermal properties. Thermochim. Acta 2014, 597, 48–57.CrossRefGoogle Scholar
  16. 16.
    Manafi, P.; Ghasemi, I.; Karrabi, M.; Azizi, H.; Ehsaninamin, P. Effect of graphene nanoplatelets on crystallization kinetics of poly(lactic acid). Soft Mater 2014, 12, 433–444.CrossRefGoogle Scholar
  17. 17.
    Huang, H. D.; Xu, J. Z.; Fan, Y.; Xu, L.; Li, Z. M. Poly(L-lactic acid) crystallization in a confined space containing graphene oxide nanosheets. J. Phys. Chem. B 2013, 117, 10641–10651.CrossRefGoogle Scholar
  18. 18.
    Plechkova, N. V.; Seddon, K. R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123–150.CrossRefGoogle Scholar
  19. 19.
    Armand, M.; Endres, F.; Macfarlane, D. R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 2009, 8, 621–629.CrossRefGoogle Scholar
  20. 20.
    Rogers, R. D.; Seddon, K. R. Ionic liquids-solvents of the future? Science 2003, 5646, 792–793.CrossRefGoogle Scholar
  21. 21.
    Scott, M. P.; Brazel, C. S.; Benton, M. G.; Mays, J. W.; Holbrey, J. D.; Rogers, R. D. Application of ionic liquids as plasticizers for poly(methyl methacrylate). Chem. Commun. 2002, 13, 1370–1371.CrossRefGoogle Scholar
  22. 22.
    Gui, H.; Li, Y.; Chen, S.; Xu, P.; Zheng, B.; Ding, Y. Effects of biodegradable imidazolium-based ionic liquid with ester group on the structure and properties of PLLA. Macrool. Res. 2014, Tl, 583–591.Google Scholar
  23. 23.
    Leng, J.; Purohit, P. J.; Kang, N.; Wang, D. Y.; Falkenhagen, J.; Emmerling, F. Structure-property relationships of nanocomposites based on polylactide and MgAl layered double hydroxides. Eur. Polym. J. 2015, 68, 338–354.CrossRefGoogle Scholar
  24. 24.
    Saiter, A.; Delpouve, N.; Dargent, E.; Oberhauser, W.; Conzatti, L.; Cicogna, F.; Passaglia, E. Probing the chain segment mobility at the interface of semi-crystalline polylactide/clay nanocomposites. Eur. Polym. J. 2016, 78, 274–289.CrossRefGoogle Scholar
  25. 25.
    Klonos, P.; Terzopoulou, Z.; Koutsoumpis, S.; Zidropoulos, S.; Kripotou, S.; Papageorgiou, G. Z.; Pissis, P. Rigid amorphous fraction and segmental dynamics in nanocomposites based on poly(L-lactic acid) and nano-inclusions of 1–3D geometry studied by thermal and dielectric techniques. Eur. Polym. J. 2016, 82, 16–34.CrossRefGoogle Scholar
  26. 26.
    Xu, P.; Gui, H. G.; Yang, S. Z.; Ding, Y. S.; Hao, Q. Dielectric and conductivity properties of poly(L-lactide) and poly(Llactide)/ ionic liquid blends. Macromol. Res. 2014, ll, 304–309.Google Scholar
  27. 27.
    Zhao, Y.; Hu, Z. Graphene in ionic liquids: Collective van der Waals interaction and hindrance of self-assembly pathway. J. Phys. Chem. B 2013, 36, 10540–10547.CrossRefGoogle Scholar
  28. 28.
    Saxena, A. P.; Deepa, M.; Joshi, A. G.; Bhandari, S.; Srivastava, A. K. Poly(3,4-ethylenedioxythiophene)-ionic liquid functionalized graphene/reduced graphene oxide nanostructures: Improved conduction and electrochromism. ACS Appl. Mater. Interface 2011, 4,1115–1126.Google Scholar
  29. 29.
    Lu, J.; Yang, J. X.; Wang, J.; Lim, A.; Wang, S.; Loh, K. P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 2009, 8, 2367.CrossRefGoogle Scholar
  30. 30.
    Li, Y.; Wang, Y.; Liu, L.; Han, L.; Xiang, F.; Zhou, Z. Crystallization improvement of poly(L-lactide) induced by functionalized multiwalled carbon nanotubes. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 326–339.CrossRefGoogle Scholar
  31. 31.
    Xu, J. Z.; Zhang, Z. J.; Xu, H.; Chen, J. B.; Ran, R.; Li, Z. M. Highly enhanced crystallization kinetics of poly(L-lactic acid) by poly(ethylene glycol) grafted graphene oxide simultaneously as heterogeneous nucleation agent and chain mobility promoter. Macromolecules 2015, 48, 4891–4900.CrossRefGoogle Scholar
  32. 32.
    Li, Y.; Wu, H.; Wang, Y.; Liu, L.; Han, L.; Wu, J.; Xiang, F. Synergistic effects of PEG and MWCNTs on crystallization behavior of PLLA. J. Polym. Sci., Part B: Polym. Phys. 2010, 48, 520–528.CrossRefGoogle Scholar
  33. 33.
    Androsch, R.; Iqbal, H. N.; Schick, C. Non-isothermal crystal nucleation of poly (L-lactic acid). Polymer 2015, 81,151–158.Google Scholar
  34. 34.
    Brüster, B.; Montesinos, A.; Reumaux, P.; Pérez-Camargo, R. A.; Mugica, A.; Zubitur, M.; Addiego, F. Crystallization kinetics of polylactide: Reactive plasticization and reprocessing effects. Polym. Degrad. Stab. 2018,148, 56–66.CrossRefGoogle Scholar
  35. 35.
    Hu, Y.; Xu, P.; Gui, H.; Yang, S.; Ding, Y. Effect of graphene modified by a long alkyl chain ionic liquid on crystallization kinetics behavior of poly(vinylidene fluoride). RSC Adv. 2015, 112, 92418–92427.CrossRefGoogle Scholar
  36. 36.
    Chen, H. M.; Du, X. C.; Yang, A. S.; Yang, J. H.; Huang, T.; Zhang, N.; Zhang, C. L. Effect of graphene oxides on thermal degradation and crystallization behavior of poly(L-lactide). RSC Adv. 2014, 7, 3443–3456.CrossRefGoogle Scholar
  37. 37.
    Wei, T.; Pang, S.; Xu, N.; Pan, L.; Zhang, Z.; Xu, R.; Lin, Q. Crystallization behavior and isothermal crystallization kinetics of PLLA blended with ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate. J. Appl. Polym. Sci. 2015, 132, 41308.Google Scholar
  38. 38.
    Schick, C. Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal. Bioanal. Chem. 2009, 395, 1589–1611.CrossRefGoogle Scholar
  39. 39.
    Wu, D.; Cheng, Y.; Feng, S.; Yao, Z.; Zhang, M. Crystallization behavior of polylactide/graphene composites. Ind. Eng. Chem. Res. 2013, 52, 6731–6739.CrossRefGoogle Scholar
  40. 40.
    Xiao, H.; Lu, W.; Yeh, J. T. Effect of plasticizer on the crystallization behavior of poly(lactic acid). J. Appl. Polym. Sci. 2009, 113, 112–121.CrossRefGoogle Scholar
  41. 41.
    Zhao, Y.; Qiu, Z.; Yang, W. Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(L-lactide). J. Phys. Chem. B 2008, 112, 16461–16468.Google Scholar
  42. 42.
    Mijovic, J.; Sy, J. W. Molecular dynamics during crystallization of poly(L-lactic acid) as studied by broad-band dielectric relaxation spectroscopy. Macromolecules 2002, 35, 6370–6376.CrossRefGoogle Scholar
  43. 43.
    Jeszka, J. K.; Pietrzak, L.; Pluta, M.; Boiteux, G. Dielectric properties of polylactides and their nanocomposites with montmorillonite. J. Non-Cryst. Solids 2010, 356, 818–821.CrossRefGoogle Scholar
  44. 44.
    Brás, A. R.; Viciosa, M. T.; Wang, Y.; Dionísio, M.; Mano, J. F. Crystallization of poly(L-lactic acid) probed with dielectric relaxation spectroscopy. Macromolecules 2006, 39, 6513–6520.CrossRefGoogle Scholar
  45. 45.
    Klonos, P.; Kripotou, S.; Kyritsis, A.; Papageorgiou, G. Z.; Bikiaris, D.; Gournis, D.; Pissis, P. Glass transition and segmental dynamics in poly(L-lactic acid)/graphene oxide nanocomposites. Thermochim. Acta 2015, 617, 44–53.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and DevicesHefei University of TechnologyHefeiChina

Personalised recommendations