Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 1, pp 1–10 | Cite as

Soluble Two-dimensional Supramolecular Organic Frameworks (SOFs): An Emerging Class of 2D Supramolecular Polymers with Internal Long-range Orders

  • Shu-Yan Jiang
  • Xin ZhaoEmail author
Review
  • 202 Downloads

Abstract

Two-dimensional (2D) materials have been demonstrated to exhibit unique properties originating from its 2D nature. In recent years, the construction of 2D materials has become a topic of great interest. This article summarizes the recent advance of 2D supramolecular organic frameworks (SOFs) which are homogeneously constructed in solution phase through self-assembly of rationally designed building blocks. These 2D SOFs are soluble and still maintain stable network structures in solutions, which exhibit uniqueness not only in structures but also in properties. In this concise review, the SOFs-related background is briefly introduced firstly, followed by outlining the research progress of soluble 2D SOFs from the perspective of monomer design, assembly, and structural characterization. The article ends with a personal outlook on the future development of this new class of supramolecular polymers.

Keywords

Supramolecular organic frameworks (SOFs) Self-assembly Two-dimensional Supramolecular polymers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21472225, 21725404) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDAB20000000).

References

  1. 1.
    Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 7017–7036.CrossRefGoogle Scholar
  2. 2.
    Lehn J. M. in Supramolecular Chemistry: Concepts and Perspectives. Wiley VCH, Weinheim, 2006.Google Scholar
  3. 3.
    Fouquuey, C.; Lehn, J. M.; Levelut, A. M. Molecular recognition directed self–assembly of supramolecular liquid crystalline polymers from complementary chiral components. Adv. Mater. 1990, 2, 254–257.CrossRefGoogle Scholar
  4. 4.
    Aida, T.; Meijer, E. W., Stupp, S. I. Functional supramolecular polymers. Science 2012, 335, 813–817.CrossRefGoogle Scholar
  5. 5.
    Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Supramolecular polymers: Historical development, preparation, characterization, and functions. Chem. Rev. 2015,115, 7196–7293.Google Scholar
  6. 6.
    Qu, D. H.; Wang, Q. C.; Zhang, Q. W., Ma, X., Tian, H. Photoresponsive host–guest functional systems. Chem. Rev. 2015, 115, 7543–7588.CrossRefGoogle Scholar
  7. 7.
    Guo, D. S.; Liu, Y. Calixarene–based supramolecular polymerization in solution. Chem. Soc. Rev. 2012, 41, 5907–5921.CrossRefGoogle Scholar
  8. 8.
    Xu, J. F.; Zhang, X. Study on supramolecular polymers in china: An overview and outlook. Acta Polymerica Sinica (in Chinese) 2017, 37–49.Google Scholar
  9. 9.
    Wei, P.; Yan, X.; Huang, F. Supramolecular polymers constructed by orthogonal self–assembly based on host–guest and metal–ligand interaction. Chem. Soc. Rev. 2015, 44, 815–832.CrossRefGoogle Scholar
  10. 10.
    Harada A. in Supramolecular Polymers Chemistry. Wiley VCH, Weinheim, 2012.Google Scholar
  11. 11.
    Fan, Y.; Lin, F.; Xu, X. N.; Xu, J. Q.; Zhao, X. Construction of a rod–coil supramolecular copolymer through CB[8]–encapsulation–enhanced donor–acceptor interaction. Acta Polymerica Sinica (in Chinese) 2017, 80–85.Google Scholar
  12. 12.
    Yi, Z. J.; Wu, Z. Q.; Lin, F.; Qi, Q. Y.; Xu, X. N.; Zhao, X. A supramolecular bottlebrush polymer assembled on the basis of cucurbit[8]uril–encapsulation–enhanced donor–acceptor interaction. Chinese Chem. Lett. 2017, 28, 1167–1171.CrossRefGoogle Scholar
  13. 13.
    Chen, S. G.; Yu, Y.; Zhao, X.; Ma, Y.; Jiang, X. K.; Li, Z. T. Highly stable chiral (A)6–B supramolecular copolymers: A multivalency–based self–assembly process. J. Am. Chem. Soc. 2011, 133,11124–11127.CrossRefGoogle Scholar
  14. 14.
    Zhou, C.; Tian, J.; Wang, J. L.; Zhang, D. W.; Zhao, X.; Liu, Y.; Li, Z. T. A three–dimensional cross–linking supramolecular polymer stabilized by the cooperative dimerization of the viologen radical cation. Polym. Chem. 2014, 5, 341–345.CrossRefGoogle Scholar
  15. 15.
    Ji, X. F.; Wang, P.; Wang, H.; Huang, F. A fluorescent supramolecular crosslinked polymer gel formed by crown ether based host–guest interactions and aggregation induced emission. Chinese J. Polym. Sci. 2015, 33, 890–898.CrossRefGoogle Scholar
  16. 16.
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. E.; Grigorieva, I. V.; Firsov, A. A. Electric field in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  17. 17.
    Stock, N.; Biswas, S. Synthesis of metal–organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.CrossRefGoogle Scholar
  18. 18.
    Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metalorganic frameworks. Chem. Rev. 2012, 112, 673–674.CrossRefGoogle Scholar
  19. 19.
    Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568.CrossRefGoogle Scholar
  20. 20.
    Waller, P. J.; Gandara, F.; Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res. 2015, 48, 3053–3063.CrossRefGoogle Scholar
  21. 21.
    Zhang, K. D.; Tian, J.; Hanifi, D.; Zhang, Y.; Sue, A. C.; Zhou, T. Y.; Zhang, L.; Zhao, X.; Liu, Y.; Li, Z. T. Toward a singlelayer two–dimensional honeycomb supramolecular organic framework in water. J. Am. Chem. Soc. 2013, 135, 17913–17918.CrossRefGoogle Scholar
  22. 22.
    Wang, H.; Zhang, D. W.; Zhao, X.; Li, Z. T. Supramolecular organic frameworks (SOFs): Water–phase periodic porous selfassembled architectures. Acta Chimica Sinica (in Chinese) 2015, 73, 471–479.CrossRefGoogle Scholar
  23. 23.
    Tian, J.; Chen, L.; Zhang, D. W.; Liu, Y.; Li, Z. T. Supramolecular organic frameworks: Engineering periodicity in water through host–guest chemistry. Chem. Commun. 2016, 52, 6351–6362.CrossRefGoogle Scholar
  24. 24.
    Wang, H.; Zhang, D. W.; Li, Z. T. Supramolecular organic frameworks: porous periodic supramolecular polymers. Acta Polymerica Sinica (in Chinese) 2017, 19–26.Google Scholar
  25. 25.
    Zhang, Z. J.; Zhang, H. Y.; Chen, L.; Liu, Y. Interconversion between [5]pseudorotaxane and [3]pseudorotaxane by pasting/detaching two axle molecule. J. Org. Chem. 2011, 76, 8270–8276.CrossRefGoogle Scholar
  26. 26.
    Jeon, W. S.; Kim, H. J.; Lee, C.; Kim, K. Control of the stoichiometry in host–guest complexation by redox chemistry of guests: Inclusion of methylviologen in cucurbit[8]uril. Chem. Commun. 2002, 1828–1829.Google Scholar
  27. 27.
    Zhang, L.; Zhou, T. Y.; Tian, J.; Wang, H.; Zhang, D. W.; Zhao, X.; Liu, Y.; Li, Z. T. A two–dimensional single–layer supramolecular organic framework that is driven by viologen radical cation dimerization and further promoted by cucurbit[8]uril. Polym. Chem. 2014, 5, 4715–4721.CrossRefGoogle Scholar
  28. 28.
    Zhang, L.; Jia, Y.; Wang, H.; Zhang, D. W.; Zhang, Q.; Liu, Y.; Li, Z. T. pH–Responsive single–layer honeycomb supramolecular organic frameworks that exhibit antimicrobial activity. Polym. Chem. 2016, 7, 1861–1865.CrossRefGoogle Scholar
  29. 29.
    Pfeffermann, M.; Dong, R.; Graf, R.; Zajaczkowshi, W.; Gorelik, T.; Pisula, W.; Barita, A.; Müllen, K.; Feng, X. Free–standing monolayer two–dimensional supramolecular organic framework with good internal order. J. Am. Chem. Soc. 2015, 137, 14525–14532.CrossRefGoogle Scholar
  30. 30.
    Zhou, T. Y.; Qi, Q. Y.; Zhao, Q. L.; Fu, J.; Liu, Y.; Ma, Z.; Zhao, X. Highly thermally stable hydrogels derived from monolayered two–dimensional supramolecular polymers. Polym. Chem. 2015, 6, 3018–3023.CrossRefGoogle Scholar
  31. 31.
    Zhang, Y.; Zhou, T. Y.; Zhang, K. D.; Dai, J. L.; Zhu, Y. Y.; Zhao, X. Encapsulation enhanced dimerization of a series of 4–aryl–A–methylpyridinium derivatives in water: New building blocks for self–assembly in aqueous media. Chem. Asian J. 2014, 9, 1530–1534.CrossRefGoogle Scholar
  32. 32.
    Zhang, Y.; Zhan, T. G.; Zhou, T. Y.; Qi, Q. Y.; Xu, X. N.; Zhao, X. Fluorescence enhancement through the formation of a single–layer two–dimensional supramolecular organic framework and its application in highly selective recognition of picric acid. Chem. Commun. 2016, 52, 7588–7591.CrossRefGoogle Scholar
  33. 33.
    Zhang, S.; Yan, J. M.; Qin, A. J.; Sun, J. Z.; Tang, B. Z. The specific detection of Cu(II) using an AIE–active alanine ester. Chinese Chem. Lett. 2013, 24, 668–672.CrossRefGoogle Scholar
  34. 34.
    Lee, H. J.; Kim, H. J.; Lee, E. C.; Kim, J.; Park, S. Y. Highly luminescent and water–soluble two–dimensional supramolecular organic framework: All–organic photosensitizer template for visible–light–driven hydrogen evolution from water. Chem. Asian J. 2018, 13, 390–394.CrossRefGoogle Scholar
  35. 35.
    Zhang, X.; Nie, C. B.; Zhou, T. Y.; Qi, Q. Y.; Fu, J.; Wang, X. Z.; Dai, L.; Chen, Y.; Zhao, X. The construction of single–layer two–dimensional supramolecular organic frameworks in water through the self–assembly of rigid vertexes and flexible edges. Polym. Chem. 2015, 6,1923–1927.Google Scholar
  36. 36.
    Xu, S. Q.; Zhang, X.; Nie, C. B.; Pang, Z. F.; Xu, X. N.; Zhao, X. The construction of a two–dimensional supramolecular organic framework with parallelogram pores and stepwise fluorescence enhancement. Chem. Commun. 2015, 51, 16417–16420.CrossRefGoogle Scholar
  37. 37.
    Chen, X. M.; Zhang, Y. M.; Liu, Y. Adsorption of anionic dyes from water by thermostable supramolecular hydrogel. Supramol. Chem. 2016, 28, 817–824.CrossRefGoogle Scholar
  38. 38.
    Li, Y. W.; Dong, Y. H.; Miao, X. R.; Ren, Y. L.; Zhang, B. L.; Wang, P. P.; Yu, Y.; Li, B.; Isaacs, L.; Cao, L. P. Shape–controllable and fluorescent supramolecular organic frameworks through aqueous host–guest complexation. Ange w. Chem. Int. Ed. 2018, 57, 729–733.CrossRefGoogle Scholar
  39. 39.
    Yue, L.; Wang, S.; Zhou, D.; Zhang, H.; Li, B.; Wu, L. X. Flexible single–layer ionic organic–inorganic frameworks towards precise nano–size separation. Nat. Commun. 2016, 7, 10742.CrossRefGoogle Scholar
  40. 40.
    Zhou, T. Y.; Xu, S. Q.; Wen, Q.; Pang, Z. F.; Zhao, X. Onestep construction of two different kinds of pores in a 2D covalent organic framework. J. Am. Chem. Soc. 2014, 136, 15885–15888.CrossRefGoogle Scholar
  41. 41.
    Pang, Z. F.; Xu, S. Q.; Zhou, T. Y.; Liang, R. R.; Zhan, T. G.; Zhao, X. Construction of covalent organic frameworks bearing three different kinds of pores through the heterostructural mixed linker strategy. J. Am. Chem. Soc. 2016, 138, 4710–4713.CrossRefGoogle Scholar
  42. 42.
    Qian, C.; Qi, Q. Y.; Jiang, G. F.; Cui, F. Z.; Tian, Y.; Zhao, X. Toward covalent organic frameworks bearing three different kinds of pores: the strategy for construction and COF–to–COF transformation via heterogeneous linker exchange. J. Am. Chem. Soc. 2017, 139, 6736–6743.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina

Personalised recommendations