Chinese Journal of Polymer Science

, Volume 37, Issue 2, pp 142–148 | Cite as

A Comparative Study on Emulsion Polymerization Processes of Styrene Initiated by Water-soluble and Oil-soluble Initiators

  • Xiao-Jing Liu
  • Yu-He Tian
  • Yang-Cheng LuEmail author


The solubility of initiator determines its distribution and the roles played in emulsion polymerization as well as the final products, but this is still lack of systematic investigation. The present work focuses on this issue by comparing the kinetic behaviors and product properties of styrene emulsion polymerization initiated by 2,2-azoisobutyronitrile (AIBN) and potassium persulphate (KPS). Compared to KPS-initiated emulsion polymerization, the AIBN-initiated polymerization was found to be insensitive to the type of emulsifier, and have high polymerization rate as well as narrow molecular weight distribution and particle size distribution. This result indicates the effective free radicals are generated in micelles or colloids, which could decrease the proportion of homogeneous nucleation and make the process and product more controllable. As a consequence, there is a linear relationship between molecular weight of product and AIBN concentration in lg-lg coordinate. It provided a reference for the preparation of latexes with specified molecular weight and supported the possibility of the coexistence of multiple free radicals in one micelle or colloid when using oil-soluble initiator.


Emulsion polymerization Oil-soluble initiator Water-soluble initiator Styrene Reaction mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors granted the financial support of the National Natural Science Foundation of China (Nos. 21422603 and U1662120).


  1. 1.
    Asua, J. M. Emulsion polymerization: From fundamental mechanisms to process developments. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 1025–1041.CrossRefGoogle Scholar
  2. 2.
    Zhao, B.; Deng, J. P. Emulsion polymerization of acetylenics for constructing optically active helical polymer nanoparticles. Polym. Rev. 2017, 57, 119–137.CrossRefGoogle Scholar
  3. 3.
    Jiang, S.; Van Dyk, A.; Maurice, A.; Bohling, J.; Fasano, D.; Brownell, S. Design colloidal particle morphology and self–assembly for coating applications. Chem. Soc. Re v. 2017, 46, 3792–3807.CrossRefGoogle Scholar
  4. 4.
    Smith, W. V.; Ewart, R. H. Kinetics of emulsion polymeriza–tion. J. Chem. Phys. 1948,16, 592–599.CrossRefGoogle Scholar
  5. 5.
    Gardon, J. L. Emulsion polymerization. I. Recalculation and extension of Smith–Ewart theory. J. Polym. Sci., Part A: Polym. Chem. 1968, 6, 623–641.CrossRefGoogle Scholar
  6. 6.
    Gardon, J. L. Emulsion polymerization. II. Review of experimental data in the context of the context of the revised Smith–Ewart theory. J. Polym. Sci., Part A: Polym. Chem. 1968, 6, 643–664.Google Scholar
  7. 7.
    Dong, Y. A molecular theory for particle nucleation: Primary particle formation in emulsion polymerization. J. Colloid Interface Sci. 2008, 326, 354–359.CrossRefGoogle Scholar
  8. 8.
    Ozdeger, E.; Sudol, E. D.; EIAasser, M. S.; Klein, A. Role of the nonionic surfactant triton X–405 in emulsion polymerization. III. Copolymerization of styrene and n–butyl acrylate. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 3837.CrossRefGoogle Scholar
  9. 9.
    Yamamoto, T. Effect of the amount of n electrons in aromatic monomer on the surface potential of polymeric particles obtained through soap–free emulsion polymerization using AIBN. Chem. Lett. 2015, 44, 1555–1556.CrossRefGoogle Scholar
  10. 10.
    Yamamoto, T.; Takahashi, Y. Synthesis of hydrocolloid through polymerization of styrene and A–vinyl acetamide by AIBN. Colloid Surf. A 2017, 516, 80–84.CrossRefGoogle Scholar
  11. 11.
    Liu, B. J.; Wang, Y. J.; Zhang, M. Y.; Zhang, H. X. Initiator systems effect on particle coagulation and particle size distribution in one–step emulsion polymerization of styrene. Polymers–Basel 2016, 8, 55.CrossRefGoogle Scholar
  12. 12.
    Zhang, Y. W.; Zhuang, X.; Gu, W. J.; Zhao, J. X. Synthesis of polyacrylonitrile nanoparticles at high monomer concentrations by AIBN–initiated semi–continuous emulsion polymerization method. Eur. Polym. J. 2015, 67, 57–65.CrossRefGoogle Scholar
  13. 13.
    Ali, A. M. I.; Tauer, K.; Sedlak, M. Comparing emulsion polymerization of methacrylate–monomers with different hydrophilicity. Polymer 2005, 46, 1017–1023.CrossRefGoogle Scholar
  14. 14.
    Lu, Y. C.; Liu, X. J.; Luo, G. S. Synthesis of polystyrene latex via emulsion polymerization with poly(vinyl alcohol) as sole stabilizer. J. Appl. Polym. Sci. 2017,134, 45111.CrossRefGoogle Scholar
  15. 15.
    Suzuki, A.; Matsuda, Y.; Masuda, T.; Kikuchi, K.; Okaya, T. Effect of additives on the initial stage of emulsion polymerization of styrene (St) using poly(vinyl alcohol) as a protective colloid. Colloid. Polym. Sci. 2006, 285, 193–201.CrossRefGoogle Scholar
  16. 16.
    Kim, N.; Sudol, E. D.; Dimonie, V. L.; El–Aasser, M. S. Comparison of conventional and miniemulsion copolymerizations of acrylic monomers using poly(vinyl alcohol) as the sole stabilizer. Macromolecules 2004, 37, 2427–2433.CrossRefGoogle Scholar
  17. 17.
    Lee, S.; Mackay, D.; Rudin, A. A moderately water–soluble azo initiator for emulsion polymerizations. J. Appl. Polym. Sci. 1991, 42, 3076.Google Scholar
  18. 18.
    Autran, C.; de la Cal, J. C.; Asua, J. M. (Mini)emulsion polymerization kinetics using oil–soluble initiators. Macromolecules 2007, 40, 6233–6238.CrossRefGoogle Scholar
  19. 19.
    Capek, I. On the role of oil–soluble initiators in the radical polymerization of micellar systems. Adv. Colloid Interface Sci. 2001, 91, 295–334.CrossRefGoogle Scholar
  20. 20.
    Alduncin, J. A.; Forcada, J.; Barandiaran, M. J.; Asua, J. M. On the main locus of radical formation in emulsion polymerization initiated by oil–soluble initiators. J. Polym. Sci., Part A: Polym. Chem. 1991, 29, 1265–1270.CrossRefGoogle Scholar
  21. 21.
    Nomura, M.; Ikoma, J.; Fujita, K. Kinetics and mechanisms of emulsion polymerization initiated by oil–soluble initiators. IV. Kinetic modeling of unseeded emulsion polymerization of styrene initiated by 2,2'–azobisisobutyronitrile. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 2103–2113.Google Scholar
  22. 22.
    Nomura, M.; Fujita, K. Kinetics and mechanism of emulsion polymerization initiated by oil–soluble initiators. Makromol. Chem. Rapid Commun. 1989,10, 581–587.CrossRefGoogle Scholar
  23. 23.
    Mork, P. C.; Makame, Y. Compartmentalized polymerization with oil–soluble initiators. Kinetic effect of single radical formation. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 2347–2354.Google Scholar
  24. 24.
    Capek, I.; Barton, J.; Karpatyova, A. Emulsion polymerization of butyl methacrylate initiated by 2,2'–azoisobutyronitrile. 3. On the applicability of the modified Smith–Ewart model. Makromol. Chem. 1987,188, 703–710.CrossRefGoogle Scholar
  25. 25.
    Asua, J. M.; Rodriguez, V. S.; Sudol, E. D.; El–Aasser, M. S. The free radical distribution in emulsion polymerization using oil–soluble initiators. J. Polym. Sci., Part A: Polym. Chem. 1989, 27, 3569–3587.CrossRefGoogle Scholar
  26. 26.
    Shang, Y.; Shan, G. R.; Pan, P. J. Kinetic and molecular weight modeling of miniemulsion polymerization initiated by oil–soluble initiators. Macromol. Chem. Phys. 2015, 216, 884–893.CrossRefGoogle Scholar
  27. 27.
    Barton, J.; Karpatyova, A. Emulsion polymerization of butyl methacrylate initiated by 2,2'–azoisobutyronitrile. 1. Kinetic and mechanism. Macromol. Chem. Phys. 1987, 188, 693–702.Google Scholar
  28. 28.
    Luo, Y. W.; Schork, F. J. Emulsion and miniemulsion polymerizations with an oil–soluble initiator in the presence and absence of an aqueous–phase radical scavenger. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 3200–3211.CrossRefGoogle Scholar
  29. 29.
    Weiss, J.; Coupland, J. N.; Brathwaite, D.; McClements, D. J. Influence of molecular structure of hydrocarbon emulsion droplets on their solubilization in nonionic surfactant micelles. Colloid Surf. A 1997,121, 53–60.CrossRefGoogle Scholar
  30. 30.
    Van der Hoff, B. M. E. Kinetics of emulsion polymerization. Ad. Chem. Ser. 1962, 34, 6–31.CrossRefGoogle Scholar
  31. 31.
    Capek, I. Sterically and electrosterically stabilized emulsion polymerization Kinetics and preparation. Adv. Colloid Interface Sci. 2002, 99, 77–162.CrossRefGoogle Scholar
  32. 32.
    Chern, C. S.; Lin, S. Y.; Chang, S. C.; Lin, J. Y.; Lin, Y. F. Effect of initiator on styrene emulsion polymerisation stabilised by mixed SDS/NP–40 surfactants. Polymer 1998, 39, 2281–2289.CrossRefGoogle Scholar
  33. 33.
    Weiss, J.; McClements, D. J. Mass transport phenomena in oilin–water emulsions containing surfactant micelles: Solubilization. Langmuir 2000, 16, 5879–5883.CrossRefGoogle Scholar
  34. 34.
    Capek, I.; Chudej, J. On the fine emulsion polymerization of styrene with non–ionic emulsifier. Polym. Bull. 1999, 43, 417–424.CrossRefGoogle Scholar
  35. 35.
    Chern, C. S.; Lin, C. H. Using a water–insoluble dye to probe the particle nucleation loci in styrene emulsion polymerization. Polymer 1999, 40, 139–147.CrossRefGoogle Scholar
  36. 36.
    Ozdeger, E.; Sudol, E. D.; El–Aasser, M. S.; Klein, A. Role of the nonionic surfactant Triton X–405 in emulsion polymerization. 1. Homopolymerization of styrene. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 3813–3825.CrossRefGoogle Scholar
  37. 37.
    Nomura, M.; Tobita, H.; Suzuki, K. Emulsion polymerization: Kinetic and mechanistic aspects. Adv. Polym. Sci. 2005, 175, 1–128.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Engineering, Department of Chemical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations