Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 3, pp 253–257 | Cite as

Study on Phase Transformation Behavior of Strain-induced PLLA Mesophase by Polarized Infrared Spectroscopy

  • Jian Hu
  • Li-Li Han
  • Tong-Ping Zhang
  • Yong-Xin Duan
  • Jian-Ming ZhangEmail author
Article
  • 24 Downloads

Abstract

The structural transformation of mesophase to crystalline phase of strain-induced poly(L-lactic acid) has been investigated by differential scanning calorimetry (DSC) and in situ temperature dependent polarized Fourier transform infrared (FTIR) spectroscopy. It is found that, as the drawing temperature increases, melting of strain-induced mesophase in the heating process can remarkably interfere the crystallization behavior subsequently. Coupling with in situ polarized FTIR, from 60 °C to 76 °C, the mesophase melts partially rather than completely melting, and changes immediately to three-dimensional ordered structure. Of particular note, through monitoring the subtle spectral change in the critical phase transformation temperature from 60 °C to 64 °C, it is clearly demonstrated that relaxation of oriented amorphous chains initially takes place prior to the melting of mesophase.

Keywords

Structural transformation Mesophase Strain-induced Polarized IR spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The financial supports from the National Natural Science Foundation of China (Nos. 21774068 and 21704053), and Natural Science Foundation of Shandong Province (No. ZR2017BB069) are greatly appreciated.

References

  1. 1.
    Allegra, G. in “Interphases and Mesophases in Polymer Crystallization ИГ, Springer, 2005.CrossRefGoogle Scholar
  2. 2.
    Cho, B. K.; Jain, A.; Gruner, S. M.; Wiesner, U. Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science 2004, 305, 1598–1601.CrossRefGoogle Scholar
  3. 3.
    Bates, F. S. Polymer-polymer phase behavior. Science 1991, 251, 898–905.CrossRefGoogle Scholar
  4. 4.
    De Rosa, C.; Auriemma, F. R.; Giusto, G. O.; De Ballesteros, R. Helical mesophase of syndioitactic polypropylene in copolymers with 1-hexene and 1-octene. Macromolecules 2010, 43, 9802–9809.CrossRefGoogle Scholar
  5. 5.
    Androsch, R.; Di Lorenzo, M. L.; Schick, C.; Wunderlich, B. Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer 2010, 51, 4639–4662.CrossRefGoogle Scholar
  6. 6.
    De Rosa, C.; Auriemma, F.; Di Girolamo, R.; Romano, L. M.; De Luca, R. A new mesophase of isotactic polypropylene in copolymers of propylene with long branched comonomers. Macromolecules 2010, 43, 8559–8569.CrossRefGoogle Scholar
  7. 7.
    Mileva, D.; Androsch, R.; Zhuravlev, E.; Schick, C. Temperature of melting of the mesophase of isotactic polypropylene. Macromolecules 2009, 42, 7275–7278.CrossRefGoogle Scholar
  8. 8.
    Androsch, R. In situ atomic force microscopy of the mesomorphic monoclinic phase transition in isotactic polypropylene. Macromolecules 2008, 41, 533–535.CrossRefGoogle Scholar
  9. 9.
    Welsh, G. E.; Blundell, D. J.; Windle, A. H. Transient mesophase on drawing polymers based on polyethylene terephthalate (PET) and polyethylene naphthoate (PEN). J. Mater. Sci. 2000, 35, 5225–5240.CrossRefGoogle Scholar
  10. 10.
    Cocca, M.; Androsch, R.; Righetti, M. C.; Malinconico, M.; Di Lorenzo, M. L. Conformationally disordered crystals and their influence on material properties: The cases of isoitactic polypropylene, isoitactic poly(1-butene), and poly(L-lactic acid). J. Mol. Struct. 2014,1078, 114–132.Google Scholar
  11. 11.
    Chen, C. Y.; Yang, C. F.; Jeng, U. S.; Su, A. C. Intrinsic metastability of the α′ phase and its partial transformation into a crystals during isothermal cold-crystallization of poly(Llactide). Macromolecules 2014, 47, 5144–5151.CrossRefGoogle Scholar
  12. 12.
    Lan, Q.; Li, Y.; Chi, H. Highly enhanced mesophase formation in glassy poly(L-lactide) at low temperatures by low-pressure CO2 that provides moderately increased molecular mobility. Macromolecules 2016, 49, 2262–2271.CrossRefGoogle Scholar
  13. 13.
    Androsch, R.; Di Lorenzo, M. L. Effect of molar mass on the α′/α-transition in poly (L-lactic acid). Polymer 2017, 114, 144–148.CrossRefGoogle Scholar
  14. 14.
    Su, F.; Li, X.; Zhou, W.; Zhu, S.; Ji, Y.; Wang, Z.; Qi, Z.; Li, L. Direct formation of isotactic poly (1-butene) form I crystal from memorized ordered melt. Macromolecules 2013, 46, 7399–7405.CrossRefGoogle Scholar
  15. 15.
    Zhang, B.; Chen, J.; Cui, J.; Zhang, H.; Ji, F.; Zheng, G.; Heck, B.; Reiter, G.; Shen, C. effect of shear stress on crystallization of isotactic polypropylene from a structured melt. Macromolecules 2012, 45, 8933–8937.CrossRefGoogle Scholar
  16. 16.
    Natta, G.; Peraldo, M.; Corradini, P. Smectic mesomorphic form of isotactic polypropylene. Rend. Accad. Naz. Lincei 1959, 26, 14–17.Google Scholar
  17. 17.
    Natta, G.; Corradini, P. Structure and properties of isotactic polypropylene. Nuovo Cimento Suppl. 1960, 15, 40–51.CrossRefGoogle Scholar
  18. 18.
    Farrow, G. Measurement of the smectic content in undrawn polypropylene filaments. J. Appl. Polym. Sci. 1965, 9, 1227–1232.CrossRefGoogle Scholar
  19. 19.
    Miller, R. L. On the existence of near-range order in isotactic polypropylenes. Polymer 1960,1, 135–143.Google Scholar
  20. 20.
    Hosemann, R. Paracrystalline fine structure of natural and synthetic proteins Visual method for the determination of the oscillation tensors of the cell edges. Acta Crystallogr. 1951, 4, 520–530.CrossRefGoogle Scholar
  21. 21.
    Bodor, G.; Grell, M.; Kallo, A. Determination of the crystallinity of polypropylene. Faserforsch Textiltech. 1964, 15, 527–532.Google Scholar
  22. 22.
    Grebowicz, J.; Lau, S. F.; Wunderlich, B. The thermal properties of polypropylene. J. Polym. Sci., Part C: Polym. Sym. 1984, 71, 19–37.Google Scholar
  23. 23.
    Corradini, P.; Petraccone, V.; De Rosa, C.; Guerra, G. On the structure of the quenched mesomorphic phase of isotactic polypropylene. Macromolecules 1986,19, 2699–2703.CrossRefGoogle Scholar
  24. 24.
    Qiu, J.; Wang, Z.; Yang, L.; Zhao, J.; Niu, Y.; Hsiao, B. S. Deformation-induced highly oriented and stable mesomorphic phase in quenched isotactic polypropylene. Polymer 2007, 48, 6934–6947.CrossRefGoogle Scholar
  25. 25.
    Koerner, H.; Luo, Y.; Li, X.; Cohen, C.; Hedden, R. C.; Ober, C. K. Structural studies of extension-induced mesophase formation in poly(diethylsiloxane) elastomers: In situ synchrotron WAXS and SAXS. Macromolecules 2003, 36,1975–1981.CrossRefGoogle Scholar
  26. 26.
    Ran, S.; Wang, Z.; Burger, C.; Chu, B.; Hsiao, B. S. Mesophase as the precursor for strain-induced crystallization in amorphous poly(ethylene terephthalate) film. Macromolecules 2002,35, 10102–10107.Google Scholar
  27. 27.
    Carr, P. L.; Nicholson, T. M.; Ward, I. M. Mesophase structures in poly(ethylene terephthalate), poly(ethylene naphthalate) and poly(ethylene naphthalate bibenzoate). Polym. Adv. Technol 1997, 8, 592–600.CrossRefGoogle Scholar
  28. 28.
    Garcia Gutiérrez, M. C.; Karger-Kocsis, J.; Riekel, C. Cold drawing-induced mesophase in amorphous poly(ethylene naphthalate) revealed by X-ray microdiffraction. Macromolecules 2002, 35, 7320–7325.CrossRefGoogle Scholar
  29. 29.
    Dorgan, J. Polylactic acid: Properties and prospects of an environmentally benign plastic from renewable resources. Macromol. Symp. 2001, 175, 145–149.CrossRefGoogle Scholar
  30. 30.
    Gross, R. A.; Kalra, B. Biodegradable polymers for the environment. Science 2002, 297, 803–807.CrossRefGoogle Scholar
  31. 31.
    Pan, P.; Inoue, Y. Polymorphism and isomorphism in biodegradable polyesters. Prog. Polym. Sci. 2009, 34, 605–640.CrossRefGoogle Scholar
  32. 32.
    De Santis, P.; Kovacs, J. Molecular conformation of poly(Slactic acid). Biopolymers 1968, 6,299–306.CrossRefGoogle Scholar
  33. 33.
    Hoogsteen, W.; Postema, A. R.; Pennings, A. J.; ten Brinke, G.; Zugenmaier, P. Crystal structure, conformation and morphology of solution-spun poly(L-lactide) fibers. Macromolecules 1990, 23, 634–642.CrossRefGoogle Scholar
  34. 34.
    Kalb, B.; Pennings, A. J. General crystallization behaviour of poly(L-lactic acid). Polymer 1980, 21, 607–612.CrossRefGoogle Scholar
  35. 35.
    Puiggali, J.; Ikada, Y.; Tsuji, H.; Cartier, L.; Okihara, T.; Lotz, B. The frustrated structure of poly(L-lactide). Polymer 2000, 41, 8921–8930.CrossRefGoogle Scholar
  36. 36.
    Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer 2000, 41, 8909–8919.CrossRefGoogle Scholar
  37. 37.
    Zhang, J.; Duan, Y.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Crystal modifications and thermal behavior of poly (Llactic acid) revealed by infrared spectroscopy. Macromolecules 2005, 38, 8012–8021.CrossRefGoogle Scholar
  38. 38.
    Stoclet, G.; Seguela, R.; Lefebvre, J. M.; Elkoun, S.; Vanmansart, C. Strain-induced molecular ordering in polylactide upon uniaxial stretching. Macromolecules 2010, 43, 1488–1498.CrossRefGoogle Scholar
  39. 39.
    Stoclet, G.; Seguela, R.; Lefebvre, J. M.; Rochas, C. New insights on the strain-induced mesophase of poly(D, L-lactide): In situ WAXS and DSC study of the thermo-mechanical stability. Macromolecules 2010, 43, 7228–7237.CrossRefGoogle Scholar
  40. 40.
    Zhang, J.; Duan, Y.; Domb, A. J.; Ozaki, Y. PLLA mesophase and its phase transition behavior in the PLLA-PEG-PLLA copolymer as revealed by infrared spectroscopy. Macromolecules 2010, 43,4240–4246.CrossRefGoogle Scholar
  41. 41.
    Wasanasuk, K.; Tashiro, K. Structural regularization in the crystallization process from the glass or melt of poly(L-lactic acid) viewed from the temperature-dependent and time-resolved measurements of FTIR and wide-angle/small-angle Xray scatterings. Macromolecules 2011, 44, 9650–9660.CrossRefGoogle Scholar
  42. 42.
    Wasanasuk, K.; Tashiro, K. Theoretical and experimental evaluation of crystallite moduli of various crystalline forms of poly(L-lactic acid). Macromolecules 2012, 45, 7019–7026.CrossRefGoogle Scholar
  43. 43.
    Lv, R.; Na, B.; Tian, N.; Zou, S.; Li, Z.; Jiang, S. Mesophase formation and its thermal transition in the stretched glassy polylactide revealed by infrared spectroscopy. Polymer 2011, 52, 4979–4984.CrossRefGoogle Scholar
  44. 44.
    Hu, J.; Zhang, T.; Gu, M.; Chen, X.; Zhang, J. Spectroscopic analysis on cold drawing-induced PLLA mesophase. Polymer 2012, 53,4922–4926.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jian Hu
    • 1
  • Li-Li Han
    • 1
  • Tong-Ping Zhang
    • 1
  • Yong-Xin Duan
    • 1
  • Jian-Ming Zhang
    • 1
    Email author
  1. 1.Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plasticsQingdao University of Science & TechnologyQingdaoChina

Personalised recommendations