Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 1, pp 28–35 | Cite as

Covering the More Visible Region by Electrochemical Copolymerization of Carbazole and Benzothiadiazole Based Donor-Acceptor Type Monomers

  • Emine Gul Cansu-ErgunEmail author
Article
  • 44 Downloads

Abstract

An electrochromic copolymer film of 2-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-7-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-8-yl)-9H-carbazole (M1) and 4,7-bis(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (M2) was prepared via electrochemical technique. The copolymerization was performed with one to one monomer feed ratio. Electrochemical and optical properties of the resulting copolymer film (P3) and the homopolymer films of M1 and M2 (P1 and P2) were investigated by using cyclic voltammetry and UV-Vis spectrometry techniques, and the corresponding results were compared. Incorporation of M1 and M2 into copolymer matrix was clearly observed on the resulting cyclic voltammograms and UV-Vis spectra. P3 covered the visible regions coming from both P1 and P2, and exhibited a neutral state darker color than those of homopolymers. P3 film was found to have a multichromic behavior, appearing as brown in its neutral state while changing its color upon oxidation to dark-gray (at about 0.3 V), to blue (at about 0.6 V) and finally to grayish cyan (beyond 0.9 V), with a corresponding optical band gap of 1.65 eV.

Keywords

Electrochemical polymerization Copolymer Electrochromic polymers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

I would like to thank and appreciate Prof. Dr. Ahmet Muhtar Onal (Department of Chemistry, Middle East Technical University, Turkey) for his academic guidance and support.

References

  1. 1.
    Pennisi, A.; Simone, F.; Barletta, G.; Di Marco, G.; Lanza, L. Preliminary test of a large electrochromic window. Electrochim. Acta 1999, 44, 3237–3243.CrossRefGoogle Scholar
  2. 2.
    Rauh, R. Electrochromic windows: an overview. Electrochim. Acta 1999, 44, 3165–3176.CrossRefGoogle Scholar
  3. 3.
    Mortimer, R. G. Electrochromic materials. Chem. Soc. Rev. 1997, 26, 147–156.CrossRefGoogle Scholar
  4. 4.
    Argun, A. A.; Aubert, P. H.; Thompson, B. C.; Schwendeman, I.; Gaupp, C. L.; Hwang, J.; Pinto, N. J.; Tanner, D. B.; MacDiarmid, A. G.; Reynolds, J. R. Multicolored electrochromism in polymers: structures and devices. Chem. Mater. 2004, 16, 4401–4412.CrossRefGoogle Scholar
  5. 5.
    Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2–18.CrossRefGoogle Scholar
  6. 6.
    Bradley, D. D. C. Conjugated polymer electroluminescence. Synt. Met. 1993, 54, 401–415.CrossRefGoogle Scholar
  7. 7.
    Kelly, F. M.; Meunier, L.; Cochrane, C.; Koncar, V. Polyaniline: application as solid state electrochromic in a flexible textile display. Displays 2013, 34, 1–7.CrossRefGoogle Scholar
  8. 8.
    Lee, K.; Povlich, L. K.; Kim, J. Recent advances in fluorescent and colorimetric conjugated polymer-based biosensors. Analyst 2010, 135, 2179–2189.CrossRefGoogle Scholar
  9. 9.
    Dance, Z. E. X.; Ahrens, M. J.; Vega, A. M.; Ricks, A. B.; McCamant, D. W.; Ratner, M. A.; Wasielewski, M. R. Direct observation of the preference of hole transfer over electron transfer for radical ion pair recombination in donor-bridge-acceptor molecules. J. Am. Chem. Soc. 2008, 130, 830–832.CrossRefGoogle Scholar
  10. 10.
    Sonmez, G.; Sonmez, H. B.; Shen, C. K. F.; Jost, R. W.; Rubin, Y.; Wudl, F. A processable green polymeric electrochromic. Macromolecules 2005, 38, 669–675.CrossRefGoogle Scholar
  11. 11.
    Zhou, H.; Yang, L.; Stuart, A. C.; Price, S. C.; Liu, S.; You, W. Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew. Chem. 2011, 50, 2885–2998.CrossRefGoogle Scholar
  12. 12.
    Song, S.; Jin, Y.; Kim, S. H.; Shim, J. Y.; Son, S.; Kim, I.; Lee, K.; Suh, H. Synthesis and characterization of polyfluorenevinylene with cyano group and carbazole unit. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 6540–6551.CrossRefGoogle Scholar
  13. 13.
    Froehlich, J. D.; Young, R.; Nakamura, T.; Ohmori, Y.; Li, S.; Mochizuk, A. Synthesis of multi-functional POSS emitters for OLED applications. Chem. Mater. 2007, 19, 4991–4997.CrossRefGoogle Scholar
  14. 14.
    Usta, H.; Facchetti, A.; Marks, T. J. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors based on the indenofluorenebis(dicyanovinylene) core. J. Am. Chem. Soc. 2008, 130, 8580–8581.CrossRefGoogle Scholar
  15. 15.
    Yang, C.; Kim, J. Y.; Cho, S.; Lee, J. K.; Heeger, A. J.; Wudl, F. Functionalized methanofullerenes used as n-type materials in bulk-heterojunction polymer solar cells and in field-effect transistors. J. Am. Chem. Soc. 2008, 130, 6444–6450.CrossRefGoogle Scholar
  16. 16.
    Malitesta, C.; Losito, I.; Zambonin, P. G. Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors. Anal. Chem. 1999, 71, 1366–1370.CrossRefGoogle Scholar
  17. 17.
    John, R.; Spencer, M.; Wallace, G. G.; Smyth, M. R. Development of a polypyrrole-based human serum albümin sensor. Anal. Chim. Acta 1991, 249, 381–385.CrossRefGoogle Scholar
  18. 18.
    Duan, C.; Huang, F.; Cao, Y. Recent development of push-pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. J. Mater. Chem. 2012, 22, 10416–10434.CrossRefGoogle Scholar
  19. 19.
    Zhou, H.; Yang, L.; You, W. Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 2012, 45, 607–632.CrossRefGoogle Scholar
  20. 20.
    Durmus, A.; Gunbas, G.; Camurlu, P.; Toppare, L. A neutral state green polymer with a superior transmissive light blue oxidized state. Chem. Commun. 2007, 3246–3248.Google Scholar
  21. 21.
    Durmus, A.; Gunbas, G.; Toppare, L. New, highly stable electrochromic polymers from 3,4-ethylenedioxythiophene—bissubstituted quinoxalines toward greeen polymeric materials. Chem. Mater. 2007, 19, 6247–6251.CrossRefGoogle Scholar
  22. 22.
    Mei, J.; Bao, Z. Side chain engineering in solution processable conjugated polymers. Chem. Mater. 2014, 26, 604–615.CrossRefGoogle Scholar
  23. 23.
    Kularatne, R. S.; Magurudeniya, H. D.; Sista, P.; Biewer, M. C.; Stefan, M. C. Donor-acceptor semiconducting polymers for organic solar cells. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 743–768.CrossRefGoogle Scholar
  24. 24.
    Hardeman, T.; Koeckelberghs, G. Synthesis of conjugated polymers by combining different coupling reactions. Polym. Chem. 2017, 8, 3999–4004.CrossRefGoogle Scholar
  25. 25.
    Xie, R.; Chen, Z.; Zhang, G.; Huang, Y.; Ying, L.; Huang, F.; Cao, Y. Synthesis and characterization of p-conjugated copolymers based on alkyltriazolyl substituted benzodithiophene. New J. Chem. 2016, 40, 4727–4734.CrossRefGoogle Scholar
  26. 26.
    Akbayrak, M.; Cansu-Ergun, E. G.; Onal, A. M. Synthesis and electro-optical properties of a new copolymer based on EDOT and carbazole. Des. Monomers Polym. 2016, 19, 679–687.CrossRefGoogle Scholar
  27. 27.
    Nie, G.; Qu, L.; Xu, J.; Zhang, S. Electrosyntheses and characterizations of a new soluble conducting copolymer of 5-cyanoindole and 3,4-ethylenedioxythiophene. Electrochim. Acta 2008, 53, 8351–8358.CrossRefGoogle Scholar
  28. 28.
    Aydın, A.; Kaya, I. Syntheses and characterization of yellow and green light emitting novel polymers containing carbazole and electroactive moieties. Electrochim. Acta 2012, 65, 105–114.Google Scholar
  29. 29.
    Aydın, A.; Kaya, I. Syntheses of novel copolymers containing carbazole and their electrochromic properties. J. Electroanal. Chem. 2013, 691, 1–12.CrossRefGoogle Scholar
  30. 30.
    Ates, M.; Uludag, N. Carbazole derivative synthesis and their electropolymerization. J. Solid State Electrochem. 2016, 20, 2599–2612.CrossRefGoogle Scholar
  31. 31.
    Carbas, B. B. Novel electrochromic copolymers based on 3-3′-dibromo-2-2′bithiophene and 3,4-ethylenedioxythiophene. Polymer 2017, 113, 180–186.CrossRefGoogle Scholar
  32. 32.
    Zhou, W.; Xu, J.; Wei, Z.; Pu, S. Electrochemical copolymerization of dibenzofuran and 3-methylthiophene in boron trifluoride diethyl etherate. Chinese J. Polym. Sci. 2008, 26, 81–90.CrossRefGoogle Scholar
  33. 33.
    Cansu-Ergun, E. G.; Onal, A. M. Carbazole based electrochromic polymers bearing ethylenedioxy and propylenedioxy scaffolds. J. Electroanal. Chem. 2018, 815, 158–165.CrossRefGoogle Scholar
  34. 34.
    Cansu-Ergun, E. G.; Akbayrak, M.; Akdag, A.; Onal, A. M. Effect of thiophene units on the properties of donor-acceptor type monomers and polymers bearing thiophene-benzothiadiazolescaffolds. J. Electrochem. Soc. 2016, 163, 153–158.CrossRefGoogle Scholar
  35. 35.
    Zhao, H. P.; Tao, X. T.; Wang, F. Z.; Ren, Y.; Sun, X. Q.; Yang, J. X.; Yan, Y. X.; Zou, D. C.; Zhao, X.; Jiang, M. H. Structure and electronic properties of triphenylamine-substituted indolo[3,2-b]carbazole derivatives as hole-transporting materials for organic light-emitting diodes. Chem. Phys. Lett. 2007, 439, 132–137.CrossRefGoogle Scholar
  36. 36.
    Bakalis, J.; Cook, A. R.; Asaoka, S.; Forster, M.; Scherf, U.; Miller, J. R. Polarons, compressed polarons and bipolarons in conjugated polymers. J. Phys. Chem. C 2014, 118, 114–125.CrossRefGoogle Scholar
  37. 37.
    Kumar, A.; Welsh, D. M.; Morvant, M. C.; Piroux, F.; Abboud, K. A.; Reynolds, J. R. Conducting poly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high contrast ratios. Chem. Mater. 1998, 10, 896–902.CrossRefGoogle Scholar
  38. 38.
    Beaujuge, P. M.; Reynolds, J. R. Color Control in p-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268–320.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringBaskent UniversityAnkaraTurkey

Personalised recommendations