Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 1, pp 59–67 | Cite as

Synthesis and AO Resistant Properties of Novel Polyimide Fibers Containing Phenylphosphine Oxide Groups in Main Chain

  • Yong Zhao
  • Hong Gao
  • Guo-Min Li
  • Fang-Fang Liu
  • Xue-Min Dai
  • Zhi-Xin Dong
  • Xue-Peng Qiu
Article
  • 36 Downloads

Abstract

A series of co-polyimide (PI) fibers containing phenylphosphine oxide (PPO) group were synthesized by incorporating the bis(4-aminophenoxy) phenyl phosphine oxide (DAPOPPO) monomer into the PI molecular chain followed by dry-jet wet spinning. The effects of DAPOPPO molar content on the atomic oxygen (AO) resistance of the fibers were investigated systematically. When the AO fluence increased from 0 atoms·cm−2 to 3.2 × 1020 atoms·cm−2, the mass loss of the fibers showed the dependence on DAPOPPO molar content in co-PI fibers. The PI fiber containing 40% DAPOPPO showed lower mass loss compared to those containing 0% and 20% DAPOPPO. At higher AO fluence, the higher DAPOPPO content gave rise to dense carpet-like surface of fibers. XPS results indicated that the passivated phosphate layer was deposited on the fiber surface when exposed to AO, which effectively prevented fiber from AO erosion. With the DAPOPPO content increasing from 0% to 40%, the retentions of tensile strength and initial modulus for the fibers exhibited obvious growth from 44% to 68%, and 59% to 70%, after AO exposure with the fluence of 3.2 × 1020 atoms·cm−2. The excellent AO resistance benefits the fibers for application in low Earth orbit as flexible construction components.

Keywords

Polyimide fibers Bis(4-aminophenoxy) phenyl phosphine oxide (DAPOPPO) Dry-jet wet spinning AO resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Basic Research Program of China (973 Program, Key Project: No. 2014CB643604). We thank Beihang University for their help in AO experiment testing.

Supplementary material

10118_2019_2179_MOESM1_ESM.pdf (1.8 mb)
Synthesis and AO Resistant Properties of Novel Polyimide Fibers Containing Phenylphosphine Oxide Groups in Main Chain

References

  1. 1.
    Fischer, H. R.; Tempelaars, K.; Kerpershoek, A.; Dingemans, T.; Iqbal, M.; Lonkhuyzen, H. V.; Iwanowsky, B.; Semprimoschnig, C. Development of flexible LEO-resistant PI films for space applications using a self-healing mechanism by surface-directed phase separation of block copolymers. ACS Appl. Mater. Interfaces 2010, 2, 2218–2225.CrossRefGoogle Scholar
  2. 2.
    Minton, T. K.; Wright, M. E.; Tomczak, S. J.; Marquez, S. A.; Shen, L.; Brunsvold, A. L.; Cooper, R.; Zhang, J.; Vij, V.; Guenthner, A. J.; Petteys, B. J. Atomic oxygen effects on POSS polyimides in low earth orbit. ACS Appl. Mater. Interfaces 2012, 4, 492–502.CrossRefGoogle Scholar
  3. 3.
    Verker, R.; Grossman, E.; Eliaz, N. Erosion of POSS-polyimide films under hypervelocity impact and atomic oxygen: The role of mechanical properties at elevated temperatures. Acta Mater. 2009, 57, 1112–1119.CrossRefGoogle Scholar
  4. 4.
    Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974.CrossRefGoogle Scholar
  5. 5.
    Sukhanova, T. E.; Baklagina, Y. G.; Kudryavtsev, V. V.; Maricheva, T. A.; Lednický, F. Morphology, deformation and failure behaviour of homo- and copolyimide fibres: 1. Fibres from 4,4′-oxybis(phthalic anhydride) (DPhO) and p-phenylenediamine (PPh) or/and 2,5-bis(4-aminophenyl)-pyrimidine (2,5PRM). Polymer 1999, 40, 6265–6276.CrossRefGoogle Scholar
  6. 6.
    Cheng, Y.; Dong, J.; Yang, C.; Wu, T.; Zhao, X.; Zhang, Q. Synthesis of poly(benzobisoxazole-co-imide) and fabrication of high-performance fibers. Polymer 2017, 133, 50–59.CrossRefGoogle Scholar
  7. 7.
    Niu, H.; Huang, M.; Qi, S.; Han, E.; Tian, G.; Wang, X.; Wu, D. High-performance copolyimide fibers containing quinazolinone moiety: Preparation, structure and properties. Polymer 2013, 54, 1700–1708.CrossRefGoogle Scholar
  8. 8.
    Dong, J.; Yin, C.; Zhao, X.; Li, Y.; Zhang, Q. High strength polyimide fibers with functionalized graphene. Polymer 2013, 54, 6415–6424.CrossRefGoogle Scholar
  9. 9.
    Chernik, V. N.; Novikov, L. S.; Bondarenko, G. G.; Gaidar, A. I.; Smirnova, T. N. Study of polymeric fiber erosion under oxygen plasma beams. Bull. Russ. Acad. Sci.: Phys. 2010, 74, 268–271.CrossRefGoogle Scholar
  10. 10.
    Zhao, Y.; Li, G.; Dai, X.; Liu, F.; Dong, Z.; Qiu, X. AO-resistant properties of polyimide fibers containing phosphorous groups in main chains. Chinese J. Polym. Sci. 2016, 34, 1469–1478.CrossRefGoogle Scholar
  11. 11.
    Liu, F.; Guo, H.; Zhao, Y.; Qiu, X.; Gao, L. Enhanced resistance to the atomic oxygen exposure of POSS/polyimide composite fibers with surface enrichment through wet spinning. Eur. Polym. J. 2018, 105, 115–125.CrossRefGoogle Scholar
  12. 12.
    Tennyson, R. C. Protective coatings for spacecraft materials. Sur. Coat. Techol. 1994, 68, 519–527.CrossRefGoogle Scholar
  13. 13.
    Deepa, D.; Packirisamy, S.; Korulla, R. M.; Ninan K. N. Atomic oxygen resistant coating from poly(tetramethyldisilylene-co-styrene). J. Appl. Polym. Sci. 2004, 94, 2368–2375.CrossRefGoogle Scholar
  14. 14.
    Liu, B.; Ji, M.; Liu, J.; Fan, L.; Yang, S. Phenylphosphine oxide containing polyimide matrix resins for atomic oxygen-resistant fiber-reinforced composites. High Perform. Polym. 2013, 25, 907–917.CrossRefGoogle Scholar
  15. 15.
    Atar, N.; Grossman, E.; Gouzman, I.; Bolker, A.; Murray, V. J.; Marshall, B. C.; Qian, M.; Minton, T. K.; Hanein, Y. Atomic-oxygen-durable and electrically-conductive CNT-POSS-polyimide flexible films for space applications. ACS Appl. Mater. Interfaces 2015, 7, 12047–12056.CrossRefGoogle Scholar
  16. 16.
    Watson, K. A.; Palmieri, F. L.; Connell, J. W. Space environmentally stable polyimides and copolyimides derived from [2,4-bis(3-aminophenoxy)phenyl]diphenylphosphine oxide. Macromolecules 2002, 35, 4968–4974.CrossRefGoogle Scholar
  17. 17.
    Connell, J. W.; Watson, K. A. Space environmentally stable polyimides and copolyimides derived from bis(3-aminophenyl)-3,5-di(trifluoromethyl)phenylphosphine oxide. High Perform. Polym. 2001, 13, 23–34.CrossRefGoogle Scholar
  18. 18.
    Thompson, C. M.; Smith, J. G.; Connell, J. W. Polyimides prepared from 4,4′-(2-diphenylphosphinyl-1,4-phenylenedioxy)-diphthalic anhydride for potential space applications. High Perform. Polym. 2003, 15, 181–195.CrossRefGoogle Scholar
  19. 19.
    Connell, J. W.; Smith, J. G.; Hedrick, J. L. Oxygen plasma-resistant phenylphosphine oxide-containing polyimides and poly(arylene ether heterocycle)s: 2. Polymer 1995, 36, 13–19.CrossRefGoogle Scholar
  20. 20.
    Smith, J. G.; Connell, J. W.; Hergenrother, P. M. Oxygen plasma resistant phenylphosphine oxide-containing poly(arylene ether)s. Polymer 1994, 35, 2834–2839.CrossRefGoogle Scholar
  21. 21.
    Jeong, K. U.; Kim, J. J.; Yoon, T. H. Synthesis and characterization of novel polyimides containing fluorine and phosphine oxide moieties. Polymer 2001, 42, 6019–6030.CrossRefGoogle Scholar
  22. 22.
    Zhu, Y.; Zhao, P.; Cai, X.; Meng, W.; Qing, F. Synthesis and characterization of novel fluorinated polyimides derived from bis[4-(4′-aminophenoxy)phenyl]-3,5-bis(trifluoromethyl)phenyl phosphine oxide. Polymer 2007, 48, 3116–3124.CrossRefGoogle Scholar
  23. 23.
    Wei, J. H.; Gang, Z. X.; Ming, L. Q.; Rehman, S.; Wei, Z. H.; Dong, D. G.; Hai, C. C. Atomic oxygen resistant phosphorus-containing copolyimides derived from bis[4-(3-aminophenoxy)phenyl] phenylphosphine oxide. Polym. Sci. Ser. B 2014, 56, 788–798.CrossRefGoogle Scholar
  24. 24.
    Li, Z.; Liu, J.; Gao, Z.; Yin, Z.; Fan, L.; Yang, S. Organo-soluble and transparent polyimides containing phenylphosphine oxide and trifluoromethyl moiety: Synthesis and characterization. Eur. Polym. J. 2009, 45, 1139–1148.CrossRefGoogle Scholar
  25. 25.
    Zhao, Y.; Dong, Z.; Li, G.; Dai, X.; Liu, F.; Ma, X.; Qiu, X. Atomic oxygen resistance of polyimide fibers with phosphorus-containing side chains. RSC Adv. 2017, 7, 5437–5444.CrossRefGoogle Scholar
  26. 26.
    Zhao, Y.; Feng, T.; Li, G.; Liu, F.; Dai, X.; Dong, Z.; Qiu, X. Synthesis and properties of novel polyimide fibers containing phosphorus groups in the main chain. RSC Adv. 2016, 6, 42482–42494.CrossRefGoogle Scholar
  27. 27.
    Zhao, Y.; Li, G.; Liu, F.; Dai, X.; Dong, Z.; Qiu, X. Synthesis and properties of novel polyimide fibers containing phosphorus groups in the side chain (DATPPO). Chinese J. Polym. Sci. 2017, 35, 372–385.CrossRefGoogle Scholar
  28. 28.
    Liu, Y. L.; Hsiue, G. H.; Lee, R. H.; Chiu, Y. S. Phosphorus-containing epoxy for flame retardant. III: Using phosphorylated diamines as curing agents. J. Appl. Polym. Sci. 1997, 63, 895–901.CrossRefGoogle Scholar
  29. 29.
    Ding, X.; Qiu, X.; Ma, X.; Li, G.; Gao, L. Preparations and properties of the phosphoruscontaining polyimide fibers. Chem. J. Chinese U. 2013, 11, 2650–2654.Google Scholar
  30. 30.
    Miyazaki, E.; Tagawa, M.; Yokota, K.; Yokota, R.; Kimoto, Y.; Ishizawa, J. Investigation into tolerance of polysiloxane-block-polyimide film against atomic oxygen. Acta Astronaut. 2010, 66, 922–928.CrossRefGoogle Scholar
  31. 31.
    Shimamura, H.; Nakamura, T. Mechanical properties degradation of polyimide films irradiated by atomic oxygen. Polym. Degrad. Stab. 2009, 94, 1389–1396.CrossRefGoogle Scholar
  32. 32.
    Duo, S. W.; Li, M. S.; Zhou, Y. C.; Tong, J. Y.; Sun, G. Investigation of surface reaction and degradation mechanism of Kapton during atomic oxygen exposure. J. Mater. Sci. Technol. 2003, 19, 535–539.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Polymer Composites Engineering Laboratory, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.China Academy of Space TechnologyBeijingChina

Personalised recommendations