Chinese Journal of Polymer Science

, Volume 37, Issue 1, pp 94–100 | Cite as

β-Phase Crystallization of Poly(vinylidene fluoride) in Poly(vinylidene fluoride)/Poly(ethyl methacrylate) Blends

  • Zi-Jie Huang
  • Jing Jiang
  • Gi Xue
  • Dong-Shan ZhouEmail author


The nature of the crystalline phase of poly(vinylidene fluoride) (PVDF) in compatible blends with poly(ethyl methacrylate) (PEMA) was investigated by using X-ray diffraction (XRD), infrared microscopy (IR) and differential scanning calorimetry (DSC). The β phase of PVDF was observed after quenching from the melt and further annealing above the glass transition temperature over a composition range. The PVDF/PEMA blend with weight ratio of 3:2 has formed higher content of PVDF β crystals than others. By taking advantage of fast cooling rate of ultrafast differential scanning calorimeter (UFDSC), the quenching process of blends was modeled and tested simultaneously, and the melting behavior of β crystals in all blends was investigated. Three types of crystallization behavior of β phase PVDF in blends were found after quenching-annealing at different temperatures.


β-Crystal of PVDF Mesophase PVDF/PEMA blend Ultra-fast scanning calorimetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 21474049, 51673094 and 21404055), Tianshan Scholars Program by Yili Normal University, and the Shenzhen Science and Technology Innovation Committee (Nos. JCYJ20160608140827794, JCYJ20160531151102203 and JCYJ20170818110206085).

Supplementary material

10118_2019_2177_MOESM1_ESM.pdf (493 kb)
β-Phase Crystallization of Poly(vinylidene fluoride) in Poly(vinylidene fluoride)/Poly(ethyl methacrylate) Blends


  1. 1.
    Abraham, K. M.; Alamgir, M. Li+–conductive solid polymer electrolytes with liquid–like conductivity. J. Electrochem. Soc. 1990, 137,1657–1658.CrossRefGoogle Scholar
  2. 2.
    Passerini, S.; Rosolen, J. M.; Scrosati, B. Plasticized carbon electrodes of interest for lithium rocking chair batteries. J. Power Sources 1993, 45, 333–341.CrossRefGoogle Scholar
  3. 3.
    Choe, H. S.; Giaccai, J.; Alamgir, M.; Abraham, K. M. Preparation and characterization of poly(vinyl sulfone)–and poly(vinylidene fluoride)–based electrolytes. Electrochim. Acta 1995, 40, 2289–2293.CrossRefGoogle Scholar
  4. 4.
    Lovinger, A. J. Crystallization of the β phase of poly(vinylidene fluoride) from the melt. Polymer 1981, 22, 412–413.CrossRefGoogle Scholar
  5. 5.
    Kim, J. C.; Yong, J. C.; Kim, Y. H. Factors determining the formation of the β crystalline phase of poly(vinylidene fluoride) in poly(vinylidene fluoride)–poly(methyl methacrylate) blends. Vib. Spectrosc. 1995, 9, 147–159.CrossRefGoogle Scholar
  6. 6.
    Salimi, A.; Yousefi, A. A. Analysis method: FTTR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 2003, 22, 699–704.CrossRefGoogle Scholar
  7. 7.
    Benz, M.; Euler, W. B.; Gregory, O. J. The role of solution phase water on the deposition of thin films of poly(vinylidene fluoride). Macromolecules 2002, 35, 2682–2688.CrossRefGoogle Scholar
  8. 8.
    Yang, J.; Wang, J.; Zhang, Q.; Chen, F.; Deng, H.; Wang, K.; Fu, Q. Cooperative effect of shear and nanoclay on the formation of polar phase in poly(vinylidene fluoride) and the resultant properties. Polymer 2011, 52, 4970–4978.CrossRefGoogle Scholar
  9. 9.
    Li, M.; Stingelin, N.; Michels, J. J.; Spijkman, M. J.; Asadi, K.; Feldman, K.; Blom, P. W. M.; de Leeuw, D. M. Ferroelectric phase diagram of PVDF:PMMA. Macromolecules 2012, 45, 7477–7485.CrossRefGoogle Scholar
  10. 10.
    Sajkiewicz, P.; Wasiak, A.; Goclowski, Z. Phase transitions during stretching of poly(vinylidene fluoride). Eur. Polym. J. 1999, 35, 423–429.CrossRefGoogle Scholar
  11. 11.
    Ferreira, A.; Costa, P.; Carvalho, H.; Nobrega, J. M.; Sencadas, V.; Lanceros–Mendez, S. Extrusion of poly(vinylidene fluoride) filaments: effect of the processing conditions and conductive inner core on the electroactive phase content and mechanical properties. J. Polym. Res. 2011,18, 1653–1658.Google Scholar
  12. 12.
    Gonçalves, R.; Martins, P. M.; Caparrós, C.; Martins, P.; Benelmekki, M.; Botelho, G.; Lanceros–Mendez, S.; Lasheras, A.; Gutiérrez, J.; Barandiarán, J. M. Nucleation of the electroactive β–phase, dielectric and magnetic response of poly(vinylidene fluoride) composites with Fe2O3 nanoparticles. J. Non–Cryst. Solids 2013, 361, 93–99.CrossRefGoogle Scholar
  13. 13.
    Voet, V. S. D.; Hermida–Merino, D.; ten Brinke, G.; Loos, K. Block copolymer route towards poly(vinylidene fluoride)/poly(methacrylic acid)/nickel nanocomposites. RSC Adv. 2013, 3, 7938–7946.CrossRefGoogle Scholar
  14. 14.
    Wu, Y.; Hsu, S. L.; Honeker, C.; Bravet, D. J.; Williams, D. S. The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride). J. Phys. Chem. B 2012, 116, 7379–7388.CrossRefGoogle Scholar
  15. 15.
    Jia, N.; Xing, Q.; Xia, G.; Sun, J.; Song, R.; Huang, W. Enhanced β–crystalline phase in poly(vinylidene fluoride) films by polydopamine–coated BaTiO3 nanoparticles. Mater. Lett. 2015, 139, 212–215.CrossRefGoogle Scholar
  16. 16.
    Yu, J. H.; Jiang, P. K.; Wu, C.; Wang, L. C.; Wu, X. F. Graphene nanocomposites based on poly(vinylidene fluoride): structure and properties. Polym. Compos. 2011, 32, 1483–1491.CrossRefGoogle Scholar
  17. 17.
    Leonard, C.; Halary, J. L.; Monnerie, L. Crystallization of poly(vinylidene fluoride) poly(methyl methacrylate) blends: Analysis of the molecular parameters controlling the nature of the poly(vinylinene fluoride) crystalline phase. Macromolecules 1988, 21,2988–2994.Google Scholar
  18. 18.
    Guo, H. F.; Li, Z. S.; Dong, S. W.; Chen, W. J.; Deng, L.; Wang, Y. F.; Ying, D. J. Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications. Colloid. Surface B 2012, 96, 29–36.CrossRefGoogle Scholar
  19. 19.
    Chaudhari, S.; Sharma, Y.; Archana, P. S.; Jose, R.; Ramakrishna, S.; Mhaisalkar, S.; Srinivasan, M. Electrospun polyaniline nanofibers web electrodes for supercapacitors. J. Appl. Polym. Sci. 2013,129, 1660–1668.Google Scholar
  20. 20.
    Leonard, C.; Halary, J. L.; Monnerie, L.; Broussoux, D.; Servet, B.; Micheron, F. FTIR evidence of beta–crystal phase formation in PVDF PMMA blends. Polym. Commun. 1983, 24, 110–114.Google Scholar
  21. 21.
    Naber, R. C. G.; Tanase, C.; Blom, P. W. M.; Gelinck, G. H.; Marsman, A. W.; Touwslager, F. J.; Setayesh, S.; De Leeuw, D. M. High–performance solution–processed polymer ferroelectric field–effect transistors. Nat. Mater. 2005, 4, 243–248.CrossRefGoogle Scholar
  22. 22.
    Naber, R. C. G.; Asadi, K.; Blom, P. W. M.; De Leeuw, D. M.; De Boer, B. Organic nonvolatile memory devices based on ferroelectricity. Ad. Mater. 2010, 22, 933–945.CrossRefGoogle Scholar
  23. 23.
    Khan, M. A.; Bhansali, U. S.; Alshareef, H. N. High–performance non–volatile organic ferroelectric memory on banknotes. Adv. Mater. 2012, 24, 2165–2170.CrossRefGoogle Scholar
  24. 24.
    Asadi, K.; De Leeuw, D. M.; De Boer, B.; Blom, P. W. M. Organic non–volatile memories from ferroelectric phase–separated blends. Nat. Mater. 2008, 7, 547–550.CrossRefGoogle Scholar
  25. 25.
    Asadi, K.; Li, M.; Stingelin, N.; Blom, P. W. M.; De Leeuw, D. M. Crossbar memory array of organic bistable rectifying diodes for nonvolatile data storage. Appl. Phys. Lett. 2010, 97, 193308.CrossRefGoogle Scholar
  26. 26.
    Asadi, K.; Li, M.; Blom, P. W. M.; Kemerink, M.; De Leeuw, D. M. Organic ferroelectric opto–electronic memories. Mater. Today 2011, 14, 592–599.CrossRefGoogle Scholar
  27. 27.
    Feuillade, G.; Perche, P. Ion–conductive macromolecular gels and membranes for solid lithium cells. J. Appl. Electrochem. 1975, 5, 63–69.CrossRefGoogle Scholar
  28. 28.
    Han, H. S.; Kang, H. R.; Kim, S. W.; Kim, H. T. Phase–separated polymer electrolyte based on poly(vinyl chloride)/poly (ethyl methacrylate) blend. J. Power Sources 2002, 112, 461–468.CrossRefGoogle Scholar
  29. 29.
    Alsaigh, Z. Y.; Chen, P. Characterization of semicrystalline polymers by inverse gas–chromatography. 2. A blend of poly(vinylidene fluoride) and poly(ethylmethacrylate). Macromolecules 1991, 24, 3788–3795.Google Scholar
  30. 30.
    Jiang, J.; Zhuravlev, E.; Huang, Z.; Wei, L.; Xu, Q.; Shan, M.; Xue, G.; Zhou, D.; Schick, C.; Jiang, W. A transient polymorph transition of 4–cyano–4′–octyloxybiphenyl (8OCB) revealed by ultrafast differential scanning calorimetry (UFDSC). Soft Matter 2013, 9, 1488–1491.CrossRefGoogle Scholar
  31. 31.
    Jiang, J.; Zhuravlev, E.; Hu, W. B.; Schick, C.; Zhou, D. S. The effect of self–nucleation on isothermal crystallization kinetics of poly(butylene succinate) (PBS) investigated by differential fast scanning calorimetry. Chinese J. Polym. Sci. 2017, 35, 1009–1019.CrossRefGoogle Scholar
  32. 32.
    Gregorio, R. Determination of the alpha, beta, and gamma crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci. 2006, 100, 3272–3279.CrossRefGoogle Scholar
  33. 33.
    Zhuravlev, E.; Schick, C. Fast scanning power compensated differential scanning nano–calorimeter: 1 The device. Thermochim. Acta 2010, 505, 1–13.CrossRefGoogle Scholar
  34. 34.
    Zhuravlev, E.; Schick, C. Fast scanning power compensated differential scanning nano–calorimeter: 2 Heat capacity analysis. Thermochim. Acta 2010, 505, 14–21.CrossRefGoogle Scholar
  35. 35.
    Gradys, A.; Sajkiewicz, P.; Zhuravlev, E.; Schick, C. Kinetics of isothermal and non–isothermal crystallization of poly(vinylidene fluoride) by fast scanning calorimetry. Polymer 2016, 82, 40–48.CrossRefGoogle Scholar
  36. 36.
    Wei, L.; Jiang, J.; Shan, M.; Chen, W.; Deng, Y.; Xue, G.; Zhou, D. Integration of ultrafast scanning calorimetry with micro–Raman spectroscopy for investigation of metastable materi als. Rev. Sci. Instrum. 2014, 85, 074901.CrossRefGoogle Scholar
  37. 37.
    Zhuravlev, E.; Schmelzer, J. W. P.; Wunderlich, B.; Schick, C. Kinetics of nucleation and crystallization in poly(epsilon caprolactone) (PCL). Polymer 2011, 52,1983–1997.Google Scholar
  38. 38.
    Wunderlich, B. in Crystal structure, Morphology, Defects. Vol. 1. Academic Press, New York, 1973, 1–552.Google Scholar
  39. 39.
    Hoffman, J. D.; Weeks, J. J. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J. Res. Nat. Bur. Stand. A 1962, 66A, 13–28.Google Scholar
  40. 40.
    Hellmuth, E.; Wunderlich, B. Superheating of linear high–polymer polyethylene crystals. J. Appl. Phys. 1965, 56, 3039–3044.CrossRefGoogle Scholar
  41. 41.
    Minakov, A.; Wurm, A.; Schick, C. Superheating in linear polymers studied by ultrafast nanocalorimetry. Eur. Polym. J. E 2007, 23, 43–53.Google Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zi-Jie Huang
    • 1
  • Jing Jiang
    • 1
  • Gi Xue
    • 1
  • Dong-Shan Zhou
    • 1
    • 2
    Email author
  1. 1.Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Materials and Technology, and The State Key Laboratory of Coordination ChemistryNanjing UniversityNanjingChina
  2. 2.School of Physical Science and Technology, Xinjiang Key Laboratory and Phase Transitions and Microstructures in Condensed MattersYili Normal UniversityYiningChina

Personalised recommendations