Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 1, pp 79–88 | Cite as

Synergistic Flame-retardant Effect of Epoxy Resin Combined with Phenethyl-bridged DOPO Derivative and Graphene Nanosheets

  • Wei YanEmail author
  • Ming-Qiu ZhangEmail author
  • Jie Yu
  • Sheng-Qiang Nie
  • Dai-Qin Zhang
  • Shu-Hao Qin
Article
  • 135 Downloads

Abstract

Phenethyl-bridged DOPO derivative (DiDOPO) was combined with graphene nanosheets (GNSs) in epoxy resin (EP) to improve its flame retardancy. The results indicated that the introduction of only 1.5 wt% DiDOPO/1.5 wt% GNS in EP increased the limited oxygen index (LOI) from 21.8% to 32.2%, hence meeting UL 94 V-0 rating. The thermogravimetric analyses revealed that char yield rose in presence of GNSs to form thermally stable carbonaceous char. The decomposition and pyrolysis products in gas phase were characterized by thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR), and the release of large amounts of phosphorus was detected in the gas phase. The evaluation of flame-retardant effect by cone calorimetry demonstrated that GNSs improved the protective-barrier effect of fire residue of EP/DiDOPO/GNS. The latter was further confirmed by digital photography and scanning electron microscopy (SEM). Also, Raman spectroscopy showed that GNSs enhanced graphitization degree of the resin during combustion. Overall, the combination of DiDOPO with GNSs provides an effective way for developing high-performance resins with improved flame retardancy.

Keywords

Epoxy resin DOPO derivative GNS Flame retardancy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the Guizhou Science and Technology Cooperation Project (No. 20157304) and the Natural Science Foundation of Education Department of Guizhou Province (No. 2015400).

References

  1. 1.
    Martins, M. S. S.; Schartel, B.; Magalhães, Fernão, D.; Pereira, C. M. C. The effect of traditional flame retardants, nanoclays and carbon nanotubes in the fire performance of epoxy resin composites. Fire Mater. 2016, 301, 9–35.Google Scholar
  2. 2.
    Zhang, X.; He, Q.; Gu, H.; Colorado, H. A.; Wei, S.; Guo, Z. Flame-retardant electrical conductive nanopolymers based on bisphenol F epoxy resin reinforced with nano polyanilines. ACS Appl. Mater. Interfaces 2013, 5, 898–910.CrossRefGoogle Scholar
  3. 3.
    Rakotomalala, M.; Wagner, S.; Döring, M. Recent developments in halogen free flame retardants for epoxy resins for electrical and electronic applications. Materials 2010, 3, 4300–4327.CrossRefGoogle Scholar
  4. 4.
    Zhuang, R. C.; Yang, J.; Wang, D. Y.; Huang, Y. X. Simultaneously enhancing the flame retardancy and toughness of epoxy by lamellar dodecyl-ammonium dihydrogen phosphate. RSC Adv. 2015, 5, 100049–100053.CrossRefGoogle Scholar
  5. 5.
    Wang, X.; Kalali, E. N.; Wang, D. Y. Renewable cardanolbased surfactant modified layered double hydroxide as a flame retardant for epoxy resin. ACS Sustain. Chem. Eng. 2015, 3, 3281–3290.CrossRefGoogle Scholar
  6. 6.
    Zotti, A.; Borriello, A.; Ricciardi, M.; Antonucci, V.; Giordano, M.; Zarrelli, M. Effects of sepiolite clay on degradation and fire behavior of a bisphenol A-based epoxy. Compos. Part B: Eng. 2015, 73, 139–148.CrossRefGoogle Scholar
  7. 7.
    Deng, L. L.; Shen, M. M.; Yu, J.; Wu, K.; Ha, C. Y. Preparation, characterization, and flame retardancy of novel rosinbased siloxane epoxy resins. Ind. Eng. Chem. Res. 2012, 51, 8178–8184.CrossRefGoogle Scholar
  8. 8.
    Zang, L.; Wagner, S.; Ciesielski, M.; Müller, P.; Döring, M. Novel star-shaped and hyperbranched phosphorus-containing flame retardants in epoxy resins. Polym. Adv. Technol. 2011, 22, 1182–1191.CrossRefGoogle Scholar
  9. 9.
    Long, L. J.; Yin, J. B.; He, W. T.; Qin, S. H.; Yu, J. Influence of a phenethyl-bridged DOPO derivative on the flame retardancy, thermal properties, and mechanical properties of poly(lactic acid). Ind. Eng. Chem. Res. 2016, 55, 10803–10812.CrossRefGoogle Scholar
  10. 10.
    Chang, Q. F.; Long, L. J.; He, W. T.; Qin, S. H.; Yu, J. Thermal degradation behavior of PLA composites containing bis DOPO phosphonates. Thermochim. Acta 2016, 639, 84–90.CrossRefGoogle Scholar
  11. 11.
    Meenakshi, K. S.; Sudhan, E. P. J.; Kumar, S. A.; Umapathy, M. J. Development and characterization of novel DOPO based phosphorus tetraglycidyl epoxy nanocomposites for aerospace applications. Prog. Org. Coat. 2011, 72, 402–409.CrossRefGoogle Scholar
  12. 12.
    Zhang, W. C.; Li, X. M.; Yang, R. J. Blowing-out effect in epoxy composites flame retarded by DOPO-POSS and its correlation with amide curing agents. Polym. Degrad. Stab. 2012, 97, 1314–1324.CrossRefGoogle Scholar
  13. 13.
    Wang, T.; Wang, J.; Huo, S. Q.; Zhang, B.; Yang, S. Preparation and flame retardancy of DOPO-based epoxy resin containing bismaleimide. High. Perform. Polym. 2016, 28, 1090–1095.CrossRefGoogle Scholar
  14. 14.
    Kiliaris, P.; Papaspyrides, C. D. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog. Polym. Sci. 2010, 35, 902–958.CrossRefGoogle Scholar
  15. 15.
    Martino, L.; Guigo, N.; Van Berkel, J. G.; Sbirrazzuoli, N. Influence of organically modified montmorillonite and sepiolite clays on the physical properties of bio-based poly(ethylene 2,5-furandicarboxylate). Compos. Part B: Eng. 2017, 110, 96–105.CrossRefGoogle Scholar
  16. 16.
    Wang, D.; Zhou, K. Q.; Yang, W.; Xing, W. Y,; Hu, Y.; Gong, X. L. Surface modification of graphene with layered molybdenum disulfide and their synergistic reinforcement on reducing fire hazards of epoxy resins. Ind. Eng. Chem. Res. 2013, 52, 17882–17890.CrossRefGoogle Scholar
  17. 17.
    Li, P. P.; Zheng, Y. P.; Li, M. Z.; Fan, W. D.; Shi, T.; Wang, Y. D.; Zhang, A. B.; Wang, J. S. Enhanced flame-retardant property of epoxy composites filled with solvent-free and liquid-like graphene organic hybrid material decorated by zinc hydroxystannate boxes. Compos. Part A: Appl. S. 2016, 81, 172–181.CrossRefGoogle Scholar
  18. 18.
    Sang, B.; Li, Z. W.; Li, X. H.; Yu, L. G.; Zhang, Z. J. Graphene-based flame retardants: a review. J. Mater. Sci. 2016, 51, 8271–8295.CrossRefGoogle Scholar
  19. 19.
    Wang, Z.; Tang, X. Z.; Yu, Z. Z.; Guo, P.; Song, H. H.; Du, X. S. Dispersion of graphene oxide and its flame retardancy effect on epoxy nanocomposites. Chinese J. Polym. Sci. 2011, 29, 368–376.CrossRefGoogle Scholar
  20. 20.
    Liu, S.; Yan, H. Q.; Fang, Z. P.; Wang, H. Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin. Compos. Sci. Technol. 2014, 90, 40–47.CrossRefGoogle Scholar
  21. 21.
    Liu, S.; Fang, Z. P.; Yan, H. Q.; Wang, H. Superior flame retardancy of epoxy resin by the combined addition of graphene nanosheets and DOPO. RSC Adv. 2016, 6, 5288–5295.CrossRefGoogle Scholar
  22. 22.
    Liu, S.; Fang, Z. P.; Yan, H. Q.; Chevali, V. S.; Wang, H. Synergistic flame retardancy effect of graphene nanosheets and traditional retardants on epoxy resin. Compos. Part A: Appl. S. 2016, 89, 26–32.CrossRefGoogle Scholar
  23. 23.
    Huang, W. J.; He, W. T.; Long, L. J.; Yan, W.; He, M.; Qin, S. H.; Yu, J. Highly efficient flame-retardant glass-fiber-reinforced polyamide 6T system based on a novel DOPO-based derivative: Flame retardancy, thermal decomposition, and pyrolysis behavior. Polym. Degrad. Stab. 2018, 148, 26–41.CrossRefGoogle Scholar
  24. 24.
    Yan, W.; Yu, J.; Zhang, M. Q.; Qin, S. H.; Wang, T.; Huang, W. J.; Long, L. J. Flame-retardant effect of a phenethyl-bridged DOPO derivative and layered double hydroxides for epoxy resin. RSC Adv. 2017, 7, 46236–46245.CrossRefGoogle Scholar
  25. 25.
    Yao, Q.; Wang, J.; Mack, A. G. 2015, U.S. Pat., 9,012,546Google Scholar
  26. 26.
    Wang, X.; Hu, Y.; Song, L.; Xing, W. Y.; Lu, H. D.; Lv, P.; Jie, G. X. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 2010, 51, 2435–2445.CrossRefGoogle Scholar
  27. 27.
    Kashiwagi, T.; Du, F.; Douglas, J. F.; Winey, K. I.; Harris, R. H. J.; Shields, J. R. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 2005, 4, 928–933.CrossRefGoogle Scholar
  28. 28.
    Qiu, Y.; Qian, L. J.; Xi, W. Flame-retardant effect of a novel phosphaphenanthrene/triazine-trione bi-group compound on an epoxy thermoset and its pyrolysis behaviour. RSC Adv. 2016, 6, 56018–56027.CrossRefGoogle Scholar
  29. 29.
    Buczko, A.; Stelzig, T.; Bommer, L.; Rentsch, D.; Heneczkowski, M.; Gaan, S. Bridged DOPO derivatives as flame retardants for PA6. Polym. Degrad. Stab. 2014, 107, 158–165.CrossRefGoogle Scholar
  30. 30.
    Wang, J. Y.; Qian, L. J.; Huang, Z. G.; Fang, Y. Y.; Qiu, Y. Synergistic flame-retardant behavior and mechanisms of aluminum poly-hexamethylenephosphinate and phosphaphenanthrene in epoxy resin. Polym. Degrad. Stab. 2016, 130, 173–181.CrossRefGoogle Scholar
  31. 31.
    Brehme, S.; Schartel, B.; Goebbels, J.; Fischer, O.; Pospiech, D.; Bykov, Y.; Döring, M. Phosphorus polyester versus aluminium phosphinate in poly(butylene terephthalate) (PBT): Flame retardancy performance and mechanisms. Polym. Degrad. Stab. 2011, 96, 875–884.CrossRefGoogle Scholar
  32. 32.
    Tang, S.; Wachtendorf, V.; Klack, P.; Qian, L. J.; Dong, Y. P.; Schartel, B. Enhanced flame-retardant effect of a montmorillonite/ phosphaphenanthrene compound in an epoxy thermoset. RSC Adv. 2017, 7, 720–728.CrossRefGoogle Scholar
  33. 33.
    Brehme, S.; Köppl, T.; Schartel, B.; Altstädt, V. Competition in aluminium phosphinate-based halogen-free flame retardancy of poly(butylene terephthalate) and its glass-fibre composites. e- Polymers 2014, 14, 193–208.CrossRefGoogle Scholar
  34. 34.
    Xu, W. H.; Wirasaputra, A.; Liu, S. M.; Yuan, Y. C.; Zhao, J. Q. Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent. Polym. Degrad. Stab. 2015, 122, 44–51.CrossRefGoogle Scholar
  35. 35.
    Schartel, B.; Perret, B.; Dittrich, B.; Ciesielski, M.; Krämer, J.; Müller, P.; Altstädt, V.; Zang, L.; Döring, M. Flame retardancy of polymers: the role of specific reactions in the condensed phase. Macromol. Mater. Eng. 2016, 301, 9–35.CrossRefGoogle Scholar
  36. 36.
    Brehme, S.; Köppl, T.; Schartel, B.; Fischer, O.; Altstädt, V.; Pospiech, D.; Döring, M. Phosphorus polyester—an alternative to low-molecular-weight flame retardants in poly(butylene terephthalate)?. Macromol. Chem. Phys. 2012, 213, 2386–2397.CrossRefGoogle Scholar
  37. 37.
    Perret, B.; Schartel, B.; Stöß, K.; Ciesielski, M.; Diederichs, J.; Döring, M.; Krämer, J.; Altstädt, V. A new halogen-free flame retardant based on 9,10-dihydro-9-oxa-10-phosphaphenanthrene- 10-oxide for epoxy resins and their carbon fiber composites for the automotive and aviation industries. Macromol. Mater. Eng. 2011, 296, 14–30.CrossRefGoogle Scholar
  38. 38.
    Qian, X. D.; Song, L.; Yu, B.; Wang, B. B.; Yuan, B. H.; Shi, Y. Q.; Hu, Y.; Yuen, R. K. K. Novel organic-inorganic flame retardants containing exfoliated graphene: preparation and their performance on the flame retardancy of epoxy resins. J. Mater. Chem. A 2013, 1, 6822–6830.CrossRefGoogle Scholar
  39. 39.
    Wang, X.; Hu, Y.; Song, L.; Xing, W. Y.; Lu, H. D. Thermal degradation mechanism of flame retarded epoxy resins with a DOPO-substitued organophosphorus oligomer by TG-FTIR and DP-MS. J. Anal. Appl. Pyrol. 2011, 92, 164–170.CrossRefGoogle Scholar
  40. 40.
    Zhang, W. C.; Li, X. M.; Li, L. M.; Yang, R. J. Study of the synergistic effect of silicon and phosphorus on the blowing-out effect of epoxy resin composites. Polym. Degrad. Stab. 2012, 97, 1041–1048.CrossRefGoogle Scholar
  41. 41.
    Li, Z. Q.; Yang, R. J. Study of the synergistic effect of polyhedral oligomeric octadiphenylsulfonylsilsesquioxane and 9,10-dihydro- 9-oxa-10-phosphaphenanthrene-10-oxide on flameretarded epoxy resins. Polym. Degrad. Stab. 2014, 109, 233–239.CrossRefGoogle Scholar
  42. 42.
    Wawrzyn, E.; Schartel, B.; Seefeldt, H.; Karrasch, A.; Jäger, C. What reacts with what in bisphenol A polycarbonate/silicon rubber/bisphenol A bis(diphenyl phosphate) during pyrolysis and fire behavior?. Ind. Eng. Chem. Res. 2012, 51, 1244–1255.CrossRefGoogle Scholar
  43. 43.
    Schartel, B.; Balabanovich, A. I.; Braun, U.; Knoll, U.; Artner, J.; Ciesielski, M.; Döring, M.; Perez, R.; Sandler, J. K. W.; Altstädt, V.; Hoffmann, T.; Pospiech, D. Pyrolysis of epoxy resins and fire behavior of epoxy resin composites flame-retarded with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide additives. J. Appl. Polym. Sci. 2007, 104, 2260–2269.CrossRefGoogle Scholar
  44. 44.
    Tuinstra, F.; Koenig, J. L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130.CrossRefGoogle Scholar
  45. 45.
    Tuinstra, F.; Koenig, J. L. Characterization of graphite fiber surfaces with raman spectroscopy. J. Compos. Mater. 1970, 4, 492–499.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ChemistrySun Yat-sen UniversityGuangzhouChina
  2. 2.School of Chemistry and Materials EngineeringGuiyang UniversityGuiyangChina
  3. 3.National Engineering Research Center for Compounding and Modification of Polymer MaterialsGuiyangChina

Personalised recommendations