Chinese Journal of Polymer Science

, Volume 37, Issue 1, pp 68–78 | Cite as

Preparation and Characteristics of Poly(butylene adipate-co-terephthalate)/Polylactide Blend Films via Synergistic Efficiency of Plasticization and Compatibilization

  • Worasak PhetwarotaiEmail author
  • Neeranuch Phusunti
  • Duangdao Aht-Ong


Polylactide (PLA) films blended with poly(butylene adipate-co-terephthalate) (PBAT) were hot melted using a twin screw extruder with the addition of triethyl citrate (TEC) as a plasticizer and toluene diisocyanate (TDI) as a compatibilizer. The synergistic effects of the two additives on the mechanical, thermal, and morphological properties of the PLA/PBAT blend films were investigated. The influence of TEC content on the plasticized PLA films and the effect of TDI’s presence on the PLA/PBAT blend films were also studied by comparing them with neat PLA. The results showed a pronounced increase in elongation at break of the plasticized PLA films with increasing TEC levels, but a slight reduction in thermal stability. Also, the addition of TEC and TDI to the blend system not only synergistically enhanced the tensile properties and tensile-impact strength of the PLA/PBAT blends, but also affected their crystallinity and cold crystallization rate, a result of the improvement of interfacial interaction between PLA and PBAT, including the enhancement of their chain mobility. The synergy of the plasticization and compatibilization processes led to the improvement of tensile properties, tensile-impact strength, and compatibility of the blends, accelerating cold crystallization without affecting crystallization.


Polylactide Plasticization Compatibilization Blend Crystallization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work was financially supported by Development and Promotion of Science and Technology Talents (DPST) (No. 013/2559). Thanks also to Mr. Thomas Coyne for assistance with the English text.


  1. 1.
    Faruk, O. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596.CrossRefGoogle Scholar
  2. 2.
    Nyambo, C.; Mohanty, A. K.; Misra, M. Patolylactide-based renewable green composites from agricultural residues and their hybrids. Biomacromolecules 2010, 11, 1654–1660.CrossRefGoogle Scholar
  3. 3.
    Zhou, K. Y.; Li, J. B.; Wang, H. X.; Ren, J. Eatffect of starshaped chain architectures on the polylactide stereocomplex crystallization behaviors. Chinese J. Polym. Sci. 2017, 35, 974–991.CrossRefGoogle Scholar
  4. 4.
    Shi, X.; Zhang, G.; Phuong, T. V.; Lazzeri, A. Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid). Molecules 2015, 20, 1579–1593.CrossRefGoogle Scholar
  5. 5.
    Wang, Y. P.; Wei, X.; Duan, J.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y. Greatly enhanced hydrolytic degradation ability of poly(L-lactide) achieved by adding poly(ethylene glycol). Chinese J. Polym. Sci. 2017, 35, 386–399.CrossRefGoogle Scholar
  6. 6.
    Mohapatra, A. K.; Mohanty, S.; Nayak, S. K. Study of thermomechanical and morphological behaviour of biodegradable PLA/PBAT/layered silicate blend nanocomposites. J. Polym. Environ. 2014, 22, 398–408.CrossRefGoogle Scholar
  7. 7.
    Ren, J.; Fu, H.; Ren, T.; Yuan, W. Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-coterephthalate). Carbohyd. Polym. 2009, 77, 576–582.CrossRefGoogle Scholar
  8. 8.
    Lee, D. Y.; Lee, S. H.; Cho, M. S.; Namc, J. D.; Lee, Y. Facile fabrication of highly flexible poly(lactic acid) film using alternate multilayers of poly(butylene adipate)-co-terephthalate. Polym. Int. 2015, 64, 581–585.CrossRefGoogle Scholar
  9. 9.
    Zhang, Y.; Deng, B. Y.; Liu, Q. S. Rheology and crystallization of PLA containing PLA-grafted nanosilica. Plast. Rubber Compos. 2014, 43, 309–314.CrossRefGoogle Scholar
  10. 10.
    Li, Y.; Shimizu, H. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromol. Biosci. 2007, 7, 921–928.CrossRefGoogle Scholar
  11. 11.
    Ouchi, T.; Ohya, Y. Design of lactide copolymers as biomaterials. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 453–462.CrossRefGoogle Scholar
  12. 12.
    Nouvel, C.; Dubois, P.; Dellacherie, E.; Six, J. L. Controlled synthesis of amphiphilic biodegradable polylactide-grafted dextran copolymers. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 2577–2588.CrossRefGoogle Scholar
  13. 13.
    Bai, H. W.; Xiu, H.; Gao, J.; Deng, H.; Zhang, Q.; Yang, M. Tailoring impact toughness of poly(L-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix. ACS Appl. Mater. Interfaces 2012, 4, 897–905.CrossRefGoogle Scholar
  14. 14.
    Yuan, Y.; Hu, Z.; Fu, X.; Jiang, L.; Xiao, Y.; Hu, K.; Yan, P.; Lei, J. Poly(lactic acid) plasticized by biodegradable glyceryl lactate. J. Appl. Polym. Sci. 2016, 133, 43460.Google Scholar
  15. 15.
    Yu, R. L.; Zhang, L. S.; Feng, Y. H.; Zhang, R. Y.; Zhu, J. Improvement in toughness of polylactide by melt blending with bio-based poly(ester)urethane. Chinese J. Polym. Sci. 2014, 32, 1099–1110.CrossRefGoogle Scholar
  16. 16.
    Labrecque, L. V.; Kumar, R. A.; Dave, V.; Gross, R. A.; Mc-Carthy, S. P. Citrate esters as plasticizers for poly(lactic acid). J. Appl. Polym. Sci. 1997, 66, 1507–1513.CrossRefGoogle Scholar
  17. 17.
    Pillin, I.; Montrelay, N.; Grohens, Y. Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor. Polymer 2006, 47, 4676–4682.CrossRefGoogle Scholar
  18. 18.
    Kim, K. S.; Chin, I. J.; Yoon, J. S.; Choi, H. J.; Lee, D. C.; Lee, K. H. Crystallization behavior and mechanical properties of poly(ethylene oxide)/poly(L-lactide)/poly(vinyl acetate) blends. J. Appl. Polym. Sci. 2001, 82, 3618–3626.CrossRefGoogle Scholar
  19. 19.
    Shibata, M.; Inoue, Y.; Miyoshi, M. Mechanical properties, morphology, and crystallization behavior of blends of poly(Llactide) with poly(butylenes succinate-co-L-lactate) and poly(butylene succinate). Polymer 2006, 47, 3557–3564.CrossRefGoogle Scholar
  20. 20.
    Fortunati, E.; Puglia, D.; Iannoni, A.; Terenzi, A.; Kenny, J. M.; Torre, L. Processing conditions, thermal and mechanical responses of stretchable poly(lactic acid)/poly(butylene succinate) films. Materials 2017, 809, 1–16.Google Scholar
  21. 21.
    Zhang, L. L.; Xiong, C. D.; Deng, X. M. Biodegradable polyester blends for biomedical application. J. Appl. Polym. Sci. 1995, 56, 103–112.CrossRefGoogle Scholar
  22. 22.
    Wang, L.; Ma, W.; Gross, R. A.; McCarthy, S. P. Reactive compatibilization of biodegradable blends of poly(lactic acid) and poly(ε-caprolactone). Polym. Degrad. Stab. 1998, 59, 161–168.CrossRefGoogle Scholar
  23. 23.
    Jiang, L.; Wolcott, M. P.; Zhang, J. W. Study of biodegradable polyactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules 2006, 7, 199–207.CrossRefGoogle Scholar
  24. 24.
    Zhang, N. W.; Wang, Q. F.; Ren, J.; Wang, L. Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J. Mater. Sci. 2009, 44, 250–256.CrossRefGoogle Scholar
  25. 25.
    Liu, B.; Bhaladhare, S.; Zhan, P.; Jiang, L.; Zhang, J. Morphology and properties of thermoplastic sugar beet pulp and poly(butylene adipate-co-terepthalate) blends. Ind. Eng. Chem. Res. 2011, 50, 13859–13865.CrossRefGoogle Scholar
  26. 26.
    Wang, Y.; Chiao, S. M.; Hung, T. F.; Yang, S. Y. Improvement in toughness and heat resistance of poly(lactic acid)/polycarbonate blend through twin-screw blending: Influence of compatibilizer type. J. Appl. Polym. Sci. 2012, 125, E402–E412.CrossRefGoogle Scholar
  27. 27.
    Xiao, H. W.; Li, P.; Ren, X.; Jiang, T.; Taut, Y. J. Isothermal crystallization kinetics and crystal structure of poly(lactic acid): Effect of triphenyl phosphate and talc. J. Appl. Polym. Sci. 2010, 118, 3558–3569.CrossRefGoogle Scholar
  28. 28.
    Phetwarotai, W.; Aht-Ong, D. Characterization and properties of nucleated polylactide, poly(butylenes adipate-co-terephthalate), and thermoplastic starch ternary blend films: Effects of compatibilizer and starch. Adv. Mater. Res. 2013, 747, 673–677.CrossRefGoogle Scholar
  29. 29.
    Jang, W. Y.; Shin, B. Y.; Lee, T. J.; Narayan, R. J. Thermal properties and morphology of biodegradation PLA/starch compatibilized blends. Ind. Eng. Chem. 2007, 13, 457–464.Google Scholar
  30. 30.
    Zhang, J. F.; Sun, X. Mechanical and thermal properties of poly(lactic acid)/starch blends with dioctyl maleate. J. Appl. Polym. Sci. 2004, 94, 1697–1704.CrossRefGoogle Scholar
  31. 31.
    Wang, H.; Sun, X.; Seib, P. Effects of starch moisture on properties of wheat starch/poly(lactic acid) blend containing methylenediphenyl diisocyanate. J. Polym. Environ. 2002, 10, 133–138.CrossRefGoogle Scholar
  32. 32.
    Phetwarotai, W.; Potiyaraj, P.; Aht-Ong, D. Properties of compatibilized polylactide blend films with gelatinized corn and tapioca starches. J. Appl. Polym. Sci. 2010, 116, 2305–2311.Google Scholar
  33. 33.
    Carlson, D.; Nie, L.; Narayan, R.; Dubois, P. Maleation of polylactide (PLA) by reactive extrusion. J. Appl. Polym. Sci. 1999, 72, 477–485.CrossRefGoogle Scholar
  34. 34.
    Li, H.; Huneault, M. A. Effect of chain extension on the properties of PLA/TPS blends. J. Appl. Polym. Sci. 2011, 122, 134–141.CrossRefGoogle Scholar
  35. 35.
    Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stab. 2012, 97, 1898–1914.CrossRefGoogle Scholar
  36. 36.
    Mohapatra, A. K.; Mohanty, S.; Nayak, S. K. Study of thermomechanical and morphological behavior of biodegradable PLA/PBAT/layered silicate blend nanocomposites. J. Polym. Environ. 2014, 22, 398–408.CrossRefGoogle Scholar
  37. 37.
    Marcilla, A. and Beltran, M., in Handbook of Plasticizers, 1st ed., by Wypych, G., ChemTec Publishing, Toronto, NY, 2004, p.115Google Scholar
  38. 38.
    Phetwarotai, W.; Tanrattanakul, V.; Phusunti, N. Synergistic effect of nucleation and compatibilization on the polylactide and poly(butylene adipate-co-terephthalate) blend films. Chinese J. Polym. Sci. 2016, 34, 1129–1140.CrossRefGoogle Scholar
  39. 39.
    Phetwarotai, W.; Tanrattanakul, V.; Phusunti, N. Mechanical characteristics and thermal behaviours of polylactide blend films: Influence of nucleating agent and poly(butylenes adipateco-terephthalate). Plast. Rubber Compos. 2016, 45, 333–345.CrossRefGoogle Scholar
  40. 40.
    Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A. J. Disorder-to-order phase transition and multiple melting behavior of poly(Llactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 2008, 41, 1352–1357.CrossRefGoogle Scholar
  41. 41.
    Battegazzore, D.; Bocchini, S.; Frache, A. Crystallization kinetics of poly(lactic acid)-talc composites. Express Polym. Lett. 2011, 5, 849–858.CrossRefGoogle Scholar
  42. 42.
    Bueche, F., in Physical Properties of Polymers, 1st ed., Interscience Publishers, NY, 1979, p.102Google Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Worasak Phetwarotai
    • 1
    • 2
  • Neeranuch Phusunti
    • 3
  • Duangdao Aht-Ong
    • 4
    • 5
  1. 1.Department of Materials Science and Technology, Faculty of SciencePrince of Songkla UniversityHatyai, SongkhlaThailand
  2. 2.Bioplastic Research Unit, Department of Materials Science and Technology, Faculty of SciencePrince of Songkla UniversityHatyai, SongkhlaThailand
  3. 3.Department of Chemistry, Faculty of SciencePrince of Songkla UniversityHatyai, SongkhlaThailand
  4. 4.Department of Materials Science, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  5. 5.Center of Excellence on Petrochemical and Materials TechnologyBangkokThailand

Personalised recommendations