Chinese Journal of Polymer Science

, Volume 37, Issue 2, pp 129–135 | Cite as

Multifunctional Cholesterol-modified Dendrimers for Targeted Drug Delivery to Cancer Cells Expressing Folate Receptors

  • Fan-Fan Fu
  • Ben-Qing Zhou
  • Zhi-Jun Ouyang
  • Yi-Lun Wu
  • Jing-Yi Zhu
  • Ming-Wu ShenEmail author
  • Jin-Dong XiaEmail author
  • Xiang-Yang ShiEmail author


We present here the development of cholesterol (Chol)-modified dendrimer system for targeted chemotherapy of folate (FA) receptor-expressing cancer cells. In our study, poly(amidoamine) (PAMAM) dendrimers of generation 5 (G5) were functionalized step-by-step with Chol, fluorescein isothiocyanate (FI), and FA via a poly(ethylene glycol) (PEG) spacer (PEG-FA), and then acetamide to shield their remaining surface amines. The synthesized G5.NHAc-Chol-FI-PEG-FA (for short, G5-CFPF) dendrimers were utilized to encapsulate 10-hydroxycamptothecin (HCP), a hydrophobic anticancer drug. We find that each G5-CFPF dendrimer can encapsulate 13.8 HCP molecules. The complexes show a slower release profiles of HCP in a pH-dependent manner than the control complexes formed using the same dendrimers without Chol under the same conditions. Thanks to the targeting role played by FA, the complexes display a specific inhibition efficacy to FA receptor-expressing cervical cancer cells. The designed Chol-modified dendrimers may be adopted as a promising carrier for application in targeted cancer therapy.


PAMAM dendrimers Folate Cholesterol 10-Hydroxycamptothecin Targeted cancer therapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the Fundamental Research Funds for the Central Universities (for M. Shen and X. Shi), the National Natural Science Foundation of China (Nos. 81761148028 and 21773026), and the Science and Technology Commission of Shanghai Municipality (Nos. 15520711400 and 17540712000).

Supplementary material

10118_2019_2172_MOESM1_ESM.pdf (1.3 mb)
Multifunctional Cholesterol-Modified Dendrimers for Targeted Drug Delivery to Cancer Cells Expressing Folate Receptors


  1. 1.
    Xu, C.; Yang, D.; Mei, L.; Li, Q.; Zhu, H.; Wang, T. Targeting chemophotothermal therapy of hepatoma by gold nanorods/graphene oxide core/shell nanocomposites. ACS Appl. Mater. Interfaces 2013, 5, 12911–12920.CrossRefGoogle Scholar
  2. 2.
    Hu, Y.; Mignani, S.; Majoral, J. P.; Shen, M. W.; Shi, X. Y. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem. Soc. Rev. 2018, 47, 1874–1900.CrossRefGoogle Scholar
  3. 3.
    Tang, F. Q.; Li, L. L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504–1534.CrossRefGoogle Scholar
  4. 4.
    Doane, T. L.; Burda, C. The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chem. Soc. Rev. 2012, 41, 2885–2911.CrossRefGoogle Scholar
  5. 5.
    Fu, F. F.; Shang, L. R.; Zheng, F. Y.; Chen, Z. Y.; Wang, H.; Wang, J.; Gu, Z. Z.; Zhao, Y. J. Cells cultured on core-shell photonic crystal barcodes for drug screening. ACS Appl. Mater. Interfaces 2016, 8, 13840–13848.CrossRefGoogle Scholar
  6. 6.
    Raemdonck, K.; Braeckmans, K.; Demeester, J.; De Smedt, S. C. Merging the best of both worlds: Hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chem. Soc. Rev. 2014, 43, 444–472.CrossRefGoogle Scholar
  7. 7.
    Malam, Y.; Loizidou, M.; Seifalian, A. M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 2009, 30, 592–599.CrossRefGoogle Scholar
  8. 8.
    Fu, F. F.; Wu, Y. L.; Zhu, J. Y.; Wen, S. H.; Shen, M. W.; Shi, X. Y. Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: Investigating the role played by PEG spacer. ACS Appl. Mater. Interfaces 2014, 6, 16416–16425.CrossRefGoogle Scholar
  9. 9.
    Zhu, J. Y.; Fu, F. F.; Xiong, Z. J.; Shen, M. W.; Shi, X. Y. Dendrimer-entrapped gold nanoparticles modified with RGD peptide and alpha-tocopheryl succinate enable targeted theranostics of cancer cells. Colloids Surf. B 2015, 133, 36–42.CrossRefGoogle Scholar
  10. 10.
    Farokhzad, O. C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16–20.CrossRefGoogle Scholar
  11. 11.
    Hammond, P. T. Virtual issue on nanomaterials for drug delivery. ACS Nano 2011, 5, 681–684.CrossRefGoogle Scholar
  12. 12.
    Wang, Y.; Deng, Y.; Luo, H.; Zhu, A.; Ke, H.; Yang, H.; Chen, H. Light-responsive nanoparticles for highly efficient cytoplasmic delivery of anticancer agents. ACS nano 2017, 11, 12134–12144.CrossRefGoogle Scholar
  13. 13.
    Luo, H.; Wang, Q.; Deng, Y.; Yang, T.; Ke, H.; Yang, H.; He, H.; Guo, Z.; Yu, D.; Wu, H. Mutually synergistic nanoparticles for effective thermomolecularly targeted therapy. Adv. Funct. Mater. 2017, 27, 1702834.CrossRefGoogle Scholar
  14. 14.
    De Koker, S.; Hoogenboom, R.; De Geest, B. G. Polymeric multilayer capsules for drug delivery. Chem. Soc. Rev. 2012, 41, 2867–2884.CrossRefGoogle Scholar
  15. 15.
    Jang, W. D.; Yim, D.; Hwang, I. H. Photofunctional hollow nanocapsules for biomedical applications. J. Mater. Chem. B 2014, 2, 2202–2211.CrossRefGoogle Scholar
  16. 16.
    Prakash, S.; Malhotra, M.; Shao, W.; Tomaro-Duchesneau, C.; Abbasi, S. Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv. Drug Deliver. Rev. 2011, 63, 1340–1351.CrossRefGoogle Scholar
  17. 17.
    Wen, S. H.; Liu, H.; Cai, H. D.; Shen, M. W.; Shi, X. Y. Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes. Adv. Healthcare Mater. 2013, 2, 1267–1276.CrossRefGoogle Scholar
  18. 18.
    Wu, Y. L.; Guo, R.; Wen, S. H.; Shen, M. W.; Zhu, M. F.; Wang, J. H.; Shi, X. Y. Folic acid-modified laponite nanodisks for targeted anticancer drug delivery. J. Mater. Chem. B 2014, 2, 7410–7418.CrossRefGoogle Scholar
  19. 19.
    Diaz, A.; Saxena, V.; Gonzalez, J.; David, A.; Casanas, B.; Carpenter, C.; Batteas, J. D.; Colon, J. L.; Clearfield, A.; Hussain, M. D. Zirconium phosphate nano-platelets: A novel platform for drug delivery in cancer therapy. Chem. Commun. 2012, 48, 1754–1756.CrossRefGoogle Scholar
  20. 20.
    Wang, S. G.; Wu, Y. L.; Guo, R.; Huang, Y. P.; Wen, S. H.; Shen, M. W.; Wang, J. H.; Shi, X. Y. Laponite nanodisks as an efficient platform for doxorubicin delivery to cancer cells. Langmuir 2013, 29, 5030–5036.CrossRefGoogle Scholar
  21. 21.
    Cheng, J.; Teply, B. A.; Sherifi, I.; Sung, J.; Luther, G.; Gu, F. X.; Levy-Nissenbaum, E.; Radovic-Moreno, A. F.; Langer, R.; Farokhzad, O. C. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 2007, 28, 869–876.CrossRefGoogle Scholar
  22. 22.
    Zhou, B. Q.; Zhao, L. Z.; Shen, M. W.; Zhao, J. H.; Shi, X. Y. A multifunctional polyethylenimine-based nanoplatform for targeted anticancer drug delivery to tumors in vivo. J. Mater. Chem. B 2017, 5, 1542–1550.CrossRefGoogle Scholar
  23. 23.
    Guo, R.; Yao, Y.; Cheng, G. C.; Wang, S. H.; Li, Y.; Shen, M. W.; Zhang, Y. H.; Baker, J. R.; Wang, J. H.; Shi, X. Y. Synthesis of glycoconjugated poly(amindoamine) dendrimers for targeting human liver cancer cells. RSC Adv. 2012, 2, 99–102.CrossRefGoogle Scholar
  24. 24.
    Liu, H.; Wang, H.; Xu, Y. H.; Guo, R.; Wen, S. H.; Huang, Y. P.; Liu, W. N.; Shen, M. W.; Zhao, J. L.; Zhang, G. X.; Shi, X. Y. Lactobionic acid-modified dendrimer-entrapped gold nanoparticles for targeted computed tomography imaging of human hepatocellular carcinoma. ACS Appl. Mater. Interfaces 2014, 6, 6944–6953.CrossRefGoogle Scholar
  25. 25.
    Zhu, J. Y.; Zheng, L. F.; Wen, S. H.; Tang, Y. Q.; Shen, M. W.; Zhang, G. X.; Shi, X. Y. Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 2014, 35, 7635–7646.CrossRefGoogle Scholar
  26. 26.
    Zheng, Y.; Fu, F. F.; Zhang, M. G.; Shen, M. W.; Zhu, M. F.; Shi, X. Y. Multifunctional dendrimers modified with alpha-tocopheryl succinate for targeted cancer therapy. Medchemcomm 2014, 5, 879–885.CrossRefGoogle Scholar
  27. 27.
    Shukla, R.; Thomas, T. P.; Desai, A. M.; Kotlyar, A.; Park, S. J.; Baker, J. R. HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb. Nanotechnology 2008, 19, 295102.CrossRefGoogle Scholar
  28. 28.
    Dung, T. H.; Kim, J. S.; Juliano, R. L.; Yoo, H. Preparation and evaluation of cholesteryl PAMAM dendrimers as nano delivery agents for antisense oligonucleotides. Colloids Surf. A 2008, 313, 273–277.CrossRefGoogle Scholar
  29. 29.
    Dhanikula, R. S.; Argaw, A.; Bouchard, J. F.; Hildgen, P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: Enhanced efficacy and intratumoral transport capability. Mol. Pharmaceutics 2008, 5, 105–116.CrossRefGoogle Scholar
  30. 30.
    Shi, X. Y.; Lee, I.; Chen, X. S.; Shen, M. W.; Xiao, S. L.; Zhu, M. F.; Baker, J. R.; Wang, S. H. Influence of dendrimer surface charge on the bioactivity of 2-methoxyestradiol complexed with dendrimers. Soft Matter 2010, 6, 2539–2545.CrossRefGoogle Scholar
  31. 31.
    Morgan, M. T.; Nakanishi, Y.; Kroll, D. J.; Griset, A. P.; Carnahan, M. A.; Wathier, M.; Oberlies, N. H.; Manikumar, G.; Wani, M. C.; Grinstaff, M. W. Dendrimer-encapsulated camptothecins: Increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res. 2006, 66, 11913–11921.CrossRefGoogle Scholar
  32. 32.
    Mignani, S.; Rodrigues, J.; Tomas, H.; Zablocka, M.; Shi, X.; Caminade, A. M.; Majoral, J. P. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem. Soc. Rev. 2018, 47, 514–532.CrossRefGoogle Scholar
  33. 33.
    Zhao, Y.; Peng, J.; Li, J.; Huang, L.; Yang, J.; Huang, K.; Li, H.; Jiang, N.; Zheng, S.; Zhang, X. Tumor-targeted and clearable human protein-based MRI nanoprobes. Nano Lett. 2017, 17, 4096–4100.CrossRefGoogle Scholar
  34. 34.
    Zhao, L.; Wu, X.; Wang, X.; Duan, C.; Wang, H.; Punjabi, A.; Zhao, Y.; Zhang, Y.; Xu, Z.; Gao, H. Development of excipient-free freeze-dryable unimolecular hyperstar polymers for efficient siRNA silencing. ACS Macro Lett. 2017, 6, 700–704.CrossRefGoogle Scholar
  35. 35.
    Li, Z.; Zhang, Y.; Huang, L.; Yang, Y.; Zhao, Y.; El-Banna, G.; Han, G. Nanoscale “fluorescent stone”: Luminescent calcium fluoride nanoparticles as theranostic platforms. Theranostics 2016, 6, 2380.CrossRefGoogle Scholar
  36. 36.
    Mercado-Lubo, R.; Zhang, Y.; Zhao, L.; Rossi, K.; Wu, X.; Zou, Y.; Castillo, A.; Leonard, J.; Bortell, R.; Greiner, D. L. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours. Nat. Commun. 2016, 7, 12225.CrossRefGoogle Scholar
  37. 37.
    Peng, C.; Qin, J. B.; Zhou, B. Q.; Chen, Q.; Shen, M. W.; Zhu, M. F.; Lu, X.W.; Shi, X. Y. Targeted tumor CT imaging using folic acid-modified PEGylated dendrimer-entrapped gold nano-particles. Polym. Chem. 2013, 4, 4412–4424.CrossRefGoogle Scholar
  38. 38.
    Liu, H.; Wang, H.; Xu, Y. H.; Shen, M. W.; Zhao, J. L.; Zhang, G. X.; Shi, X. Y. Synthesis of PEGylated low generation dendrimer-entrapped gold nanoparticles for CT imaging applications. Nanoscale 2014, 6, 4521–4526.CrossRefGoogle Scholar
  39. 39.
    Zhang, Y. Q.; Sun, Y. H.; Xu, X. P.; Zhang, X. Z.; Zhu, H.; Huang, L. L.; Qi, Y. J.; Shen, Y. M. Synthesis, biodistribution, and microsingle photon emission computed tomography (SPECT) imaging study of technetium-99m labeled PEGylated dendrimer poly(amidoamine) (PAMAM)-folic acid conjugates. J. Med. Chem. 2010, 53, 3262–3272.CrossRefGoogle Scholar
  40. 40.
    Maxfield, F. R.; Tabas, I. Role of cholesterol and lipid organization in disease. Nature 2005, 438, 612–621.CrossRefGoogle Scholar
  41. 41.
    Chen, Q. F.; Pan, Z. Z.; Zhao, M.; Wang, Q.; Qiao, C.; Miao, L. Y.; Ding, X. S. High cholesterol in lipid rafts reduces the sensitivity to EGFR-TKI therapy in non-small cell lung cancer. J. Cell. Physiol. 2018, 233, 6722–6732.CrossRefGoogle Scholar
  42. 42.
    Nelson, E. R. The significance of cholesterol and its metabolite, 27-hydroxycholesterol in breast cancer. Mol. Cell. Endocrinol. 2018, 466, 73–80.CrossRefGoogle Scholar
  43. 43.
    Li, L. H.; Guo, K.; Lu, J.; Venkatraman, S. S.; Luo, D.; Ng, K. C.; Ling, E. A.; Moochhala, S.; Yang, Y. Y. Biologically active core/shell nanoparticles self-assembled from cholesterolterminated PEG-TAT for drug delivery across the blood-brain barrier. Biomaterials 2008, 29, 1509–1517.CrossRefGoogle Scholar
  44. 44.
    Tsai, Y. C.; Vijayaraghavan, P.; Chiang, W. H.; Chen, H. H.; Liu, T. I.; Shen, M. Y.; Omoto, A.; Kamimura, M.; Soga, K.; Chiu, H. C. Targeted delivery of functionalized upconversion nanoparticles for externally triggered photothermal/photody-44 namic therapies of brain glioblastoma. Theranostics 2018, 8, 1435–1448.CrossRefGoogle Scholar
  45. 45.
    Zhou, B. Q.; Xiong, Z. G.; Wang, P.; Peng, C.; Shen, M. W.; Mignani, S.; Majoral, J. P.; Shi, X. Y. Targeted tumor dual mode CT/MR imaging using multifunctional polyethylenimineentrapped gold nanoparticles loaded with gadolinium. Drug Deliver. 2018, 25, 178–186.CrossRefGoogle Scholar
  46. 46.
    Wang, Y.; Cao, X.; Guo, R.; Shen, M.; Zhang, M.; Zhu, M.; Shi, X. Targeted delivery of doxorubicin into cancer cells using a folic acid-dendrimer conjugate. Polym. Chem. 2011, 2, 1754–1760.CrossRefGoogle Scholar
  47. 47.
    Wang, Y.; Guo, R.; Cao, X. Y.; Shen, M. W.; Shi, X. Y. Encapsulation of 2-methoxyestradiol within multifunctional poly(amidoamine) dendrimers for targeted cancer therapy. Biomaterials 2011, 32, 3322–3329.CrossRefGoogle Scholar
  48. 48.
    Luo, Y.; Zhao, L. Z.; Li, X.; Yang, J.; Guo, L. L.; Zhang, G. X.; Shen, M. W.; Zhao, J. H.; Shi, X. Y. The design of a multifunctional dendrimer-based nanoplatform for targeted dual mode SPECT/MR imaging of tumors. J. Mater. Chem. B 2016, 4, 7220–7225.CrossRefGoogle Scholar
  49. 49.
    Yang, J.; Luo, Y.; Xu, Y. H.; Li, J. C.; Zhang, Z. X.; Wang, H.; Shen, M. W.; Shi, X. Y.; Zhang, G. X. Conjugation of iron oxide nanoparticles with RGD-modified dendrimers for targeted tumor MR imaging. ACS Appl. Mater. Interfaces 2015, 7, 5420–5428.CrossRefGoogle Scholar
  50. 50.
    Morgan, M. T.; Carnahan, M. A.; Immoos, C. E.; Ribeiro, A. A.; Finkelstein, S.; Lee, S. J.; Grinstaff, M. W. Dendritic molecular capsules for hydrophobic compounds. J. Am. Chem. Soc. 2003, 125, 15485–15489.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiChina
  2. 2.Department of RadiologyShanghai Songjiang District Central HospitalShanghaiChina

Personalised recommendations