Chinese Journal of Polymer Science

, Volume 36, Issue 12, pp 1321–1327 | Cite as

CO2-responsive Polymeric Fluorescent Sensor with Ultrafast Response

  • Yun Wang
  • Meng Huo
  • Min Zeng
  • Lei Liu
  • Qi-Quan Ye
  • Xi Chen
  • Dan Li
  • Liao Peng
  • Jin-Ying YuanEmail author


Abstract Response speed is one of the most important evaluation criteria for CO2 sensors. In this work, we report an ultrafast CO2 fluorescent sensor based on poly[oligo(ethylene glycol) methyl ether methacrylate]-b-poly[N,N-diethylaminoethyl methacrylate-r-4-(2-methylacryloyloxyethylamino)-7-nitro-2,1,3-benzoxadiazole] [POEGMA-b-P(DEAEMA-r-NBDMA)], in which DEAEMA units act as the CO2-responsive segment and 4-nitrobenzo-2-oxa-1,3-diazole (NBD) is the chromophore. The micelles composed of this copolymer could disassemble in 2 s upon CO2 bubbling, accompanying with enhanced fluorescence emission with bathochromic shift. Furthermore, the quantum yield of the NBD chromophore increases with both the CO2 aeration time and the NBD content. Thus we attribute the fluorescent enhancement to the inhibition of the photo-induced electron transfer between unprotonated tertiary amine groups and NBD fluorophores. The sensor is durable although it is based on “soft” materials. These micellar sensors could be facilely recycled by alternative CO2/Ar purging for at least 5 times, indicating good reversibility.


CO2-responsive polymer Fluorescent sensor Ultrafast response 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 51573086 and 21374058) and the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (No. sklpme2014-4-26).

Supplementary material

10118_2018_2167_MOESM1_ESM.pdf (1.2 mb)
CO2-responsive Polymeric Fluorescent Sensor with Ultrafast Response


  1. 1.
    Ko, N. R.; Oh, J. K. Glutathione-triggered disassembly of dual disulfide located degradable nanocarriers of polylactide-based block copolymers for rapid drug release. Biomacromolecules 2014, 15(8), 3180–3189.CrossRefGoogle Scholar
  2. 2.
    Zhu, Y.; Wang, F.; Zhang, C.; Du, J. Preparation and mechanism insight of nuclear envelope-like polymer vesicles for facile loading of biomacromolecules and enhanced biocatalytic activity. ACS Nano 2014, 8(7), 6644–6654.CrossRefGoogle Scholar
  3. 3.
    Islam, M. R.; Li, X.; Smyth, K.; Serpe, M. J. Polymer-based muscle expansion and contraction. Angew. Chem. Int. Ed. 2013, 52(39), 10330–10333.CrossRefGoogle Scholar
  4. 4.
    Yang, R.; Zhao, Y. Non-uniform optical inscription of actuation domains in a liquid crystal polymer of uniaxial orientation: an approach to complex and programmable shape changes. Angew. Chem. Int. Ed. 2017, 56(45), 14202–14206.CrossRefGoogle Scholar
  5. 5.
    Kumar, S.; Dory, Y. L.; Lepage, M.; Zhao, Y. Surface-grafted stimuli-responsive block copolymer brushes for the thermo-, photo- and pH-sensitive release of dye molecules. Macromolecules 2011, 44(18), 7385–7393.CrossRefGoogle Scholar
  6. 6.
    Xu, L.; Liu, N.; Cao, Y.; Lu, F.; Chen, Y.; Zhang, X.; Feng, L.; Wei, Y. Mercury ion responsive wettability and oil/water separation. ACS Appl. Mater. Interfaces 2014, 6(16), 13324–13329.CrossRefGoogle Scholar
  7. 7.
    Li, C.; Wu, T.; Hong, C.; Zhang, G.; Liu, S. A general strategy to construct fluorogenic probes from charge-generation polymers (CGPs) and AIE-active fluorogens through triggered complexation. Angew. Chem. Int. Ed. 2012, 51(2), 455–459.CrossRefGoogle Scholar
  8. 8.
    Zhang, Q. M.; Xu, W.; Serpe, M. J. Optical devices constructed from multiresponsive microgels. Angew. Chem. Int. Ed. 2014, 53(19), 4827–4831.CrossRefGoogle Scholar
  9. 9.
    Hu, J.; Dai, L.; Liu, S. Analyte-reactive amphiphilic thermoresponsive diblock copolymer micelles-based multifunctional ratiometric fluorescent chemosensors. Macromolecules 2011, 44(12), 4699–4710.CrossRefGoogle Scholar
  10. 10.
    Rahimian-Bajgiran, K.; Chan, N.; Zhang, Q.; Noh, S. M.; Lee, H. I.; Oh, J. K. Tuning LCST with thiol-responsiveness of thermoresponsive copolymers containing pendant disulfides. Chem. Commun. 2013, 49(8), 807–809.CrossRefGoogle Scholar
  11. 11.
    Xiao, Y.; Sun, H.; Du, J. Sugar-breathing glycopolymersomes for regulating glucose level. J. Am. Chem. Soc. 2017, 139(22), 7640–7647.CrossRefGoogle Scholar
  12. 12.
    Xin, Y.; Yuan, J. Schiff’s base as a stimuli-responsive linker in polymer chemistry. Polym. Chem. 2012, 3(11), 3045.CrossRefGoogle Scholar
  13. 13.
    Feng, A.; Liang, J.; Ji, J.; Dou, J.; Wang, S.; Yuan, J. CO2-breathing and piercing polymersomes as tunable and reversible nanocarriers. Sci. Rep. 2016, 6, 23624.CrossRefGoogle Scholar
  14. 14.
    Zhang, Q.; Lei, L.; Zhu, S. Gas-responsive polymers. ACS Macro Lett. 2017, 6(5), 515–522.CrossRefGoogle Scholar
  15. 15.
    Huo, M.; Yuan, J.; Tao, L.; Wei, Y. Redox-responsive polymers for drug delivery: from molecular design to applications. Polym. Chem. 2014, 5(5), 1519–1528.CrossRefGoogle Scholar
  16. 16.
    Yan, Q.; Feng, A.; Zhang, H.; Yin, Y.; Yuan, J. Redoxswitchable supramolecular polymers for responsive self-healing nanofibers in water. Polym. Chem. 2013, 4(4), 1216–1220.CrossRefGoogle Scholar
  17. 17.
    Jiang, Y.; Hu, X.; Hu, J.; Liu, H.; Zhong, H.; Liu, S. Reactive fluorescence turn-on probes for fluoride ions in purely aqueous media fabricated from functionalized responsive block copolymers. Macromolecules 2011, 44(22), 8780–8790.CrossRefGoogle Scholar
  18. 18.
    Liu, T.; Liu, S. Responsive polymers-based dual fluorescent chemosensors for Zn2+ ions and temperatures working in purely aqueous media. Anal. Chem. 2011, 83(7), 2775–2785.CrossRefGoogle Scholar
  19. 19.
    Huo, M.; Du, H.; Zeng, M.; Pan, L.; Fang, T.; Xie, X.; Wei, Y.; Yuan, J. CO2-stimulated morphology transition of ABC miktoarm star terpolymer assemblies. Polym. Chem. 2017, 8(18), 2833–2840.CrossRefGoogle Scholar
  20. 20.
    Huo, M.; Ye, Q.; Che, H.; Sun, M.; Yuan, J.; Wei, Y. Synthesis and self-assembly of CO2-responsive dendronized triblock copolymers. Polym. Chem. 2015, 6(42), 7427–7435.CrossRefGoogle Scholar
  21. 21.
    Kumar, S.; Tong, X.; Dory, Y. L.; Lepage, M.; Zhao, Y. A CO2-switchable polymer brush for reversible capture and release of proteins. Chem. Commun. 2013, 49(1), 90–92.CrossRefGoogle Scholar
  22. 22.
    Liu, H.; Lin, S.; Feng, Y.; Theato, P. CO2-responsive polymer materials. Polym. Chem. 2017, 8(1), 12–23.CrossRefGoogle Scholar
  23. 23.
    Yan, Q.; Zhang, H.; Zhao, Y. CO2-switchable supramolecular block glycopolypeptide assemblies. ACS Macro Lett. 2014, 3(5), 472–476.CrossRefGoogle Scholar
  24. 24.
    Yan, Q.; Zhao, Y. CO2-stimulated diversiform deformations of polymer assemblies. J. Am. Chem. Soc. 2013, 135(44), 16300–16303.CrossRefGoogle Scholar
  25. 25.
    Yan, Q.; Zhao, Y. Block copolymer self-assembly controlled by the “green” gas stimulus of carbon dioxide. Chem. Commun. 2014, 50(79), 11631–11641.CrossRefGoogle Scholar
  26. 26.
    Mu, M.; Yin, H.; Feng, Y. CO2-responsive polyacrylamide microspheres with interpenetrating networks. J. Colloid Interface Sci. 2017, 497, 249–257.CrossRefGoogle Scholar
  27. 27.
    Wang, W.; Liu, H.; Mu, M.; Yin, H.; Feng, Y. CO2-induced reversible morphology transition from giant worms to polymersomes assembled from a block-random segmented copolymer. Polym. Chem. 2015, 6(15), 2900–2908.CrossRefGoogle Scholar
  28. 28.
    Yin, H.; Wang, W.; Mu, M.; Feng, Y. CO2-induced morphological transition of co-assemblies from block-random segmented polymers. Macromol. Rapid Commun. 2017, 38(23), 1700437.CrossRefGoogle Scholar
  29. 29.
    Han, D.; Tong, X.; Boissière, O.; Zhao, Y. General strategy for making CO2-switchable polymers. ACS Macro Lett. 2012, 1(1), 57–61.CrossRefGoogle Scholar
  30. 30.
    Yan, B.; Han, D.; Boissière, O.; Ayotte, P.; Zhao, Y. Manipulation of block copolymer vesicles using CO2: dissociation or “breathing”. Soft Matter 2013, 9(6), 2011.CrossRefGoogle Scholar
  31. 31.
    Guo, Z.; Feng, Y.; He, S.; Qu, M.; Chen, H.; Liu, H.; Wu, Y.; Wang, Y. CO2-responsive “smart” single-walled carbon nanotubes. Adv. Mater. 2013, 25(4), 584–590.CrossRefGoogle Scholar
  32. 32.
    Guo, Z.; Feng, Y.; Wang, Y.; Wang, J.; Wu, Y.; Zhang, Y. A novel smart polymer responsive to CO2. Chem. Commun. 2011, 47(33), 9348–9350.CrossRefGoogle Scholar
  33. 33.
    Yan, Q.; Zhao, Y. Polymeric microtubules that breathe: CO2-driven polymer controlled-self-assembly and shape transformation. Angew. Chem. Int. Ed. 2013, 52(38), 9948–9951.CrossRefGoogle Scholar
  34. 34.
    Yan, Q.; Zhou, R.; Fu, C.; Zhang, H.; Yin, Y.; Yuan, J. CO2-responsive polymeric vesicles that breathe. Angew. Chem. Int. Ed. 2011, 50(21), 4923–4927.CrossRefGoogle Scholar
  35. 35.
    Quek, J. Y.; Roth, P. J.; Evans, R. A.; Davis, T. P.; Lowe, A. B. Reversible addition-fragmentation chain transfer synthesis of amidine-based, CO2-responsive homo and AB diblock copolymers comprised of histamine and their gas-triggered selfassembly in water. J. Polym. Sci., Part A: Polym. Chem. 2013, 51(2), 394–404.CrossRefGoogle Scholar
  36. 36.
    Che, H.; Huo, M.; Peng, L.; Ye, Q.; Guo, J.; Wang, K.; Wei, Y.; Yuan, J. CO2-switchable drug release from magnetopolymeric nanohybrids. Polym. Chem. 2015, 6(12), 2319–2326.CrossRefGoogle Scholar
  37. 37.
    Che, H.; Huo, M.; Peng, L.; Fang, T.; Liu, N.; Feng, L.; Wei, Y.; Yuan, J. CO2-responsive nanofibrous membranes with switchable oil/water wettability. Angew. Chem. Int. Ed. 2015, 54(31), 8934–8938.CrossRefGoogle Scholar
  38. 38.
    Dong, L.; Fan, W.; Tong, X.; Zhang, H.; Chen, M.; Zhao, Y. A CO2-responsive graphene oxide/polymer composite nanofiltration membrane for water purification. J. Mater. Chem. A 2018, 6(16), 6785–6791.CrossRefGoogle Scholar
  39. 39.
    Dong, L.; Fan, W.; Zhang, H.; Chen, M.; Zhao, Y. CO2-responsive polymer membranes with gas-tunable pore size. Chem. Commun. 2017, 53(69), 9574–9577.CrossRefGoogle Scholar
  40. 40.
    Hong, W.; Chen, Y.; Feng, X.; Yan, Y.; Hu, X.; Zhao, B.; Zhang, F.; Zhang, D.; Xu, Z.; Lai, Y. Full-color CO2 gas sensing by an inverse opal photonic hydrogel. Chem. Commun. 2013, 49(74), 8229–8231.CrossRefGoogle Scholar
  41. 41.
    Ma, Y.; Promthaveepong, K.; Li, N. CO2-responsive polymerfunctionalized Au nanoparticles for CO2 sensor. Anal. Chem. 2016, 88(16), 8289–8293.CrossRefGoogle Scholar
  42. 42.
    Zhang, Q. M.; Ahiabu, A.; Gao, Y.; Serpe, M. J. CO2-switchable poly(N-isopropylacrylamide) microgel-based etalons. J. Mater. Chem. C 2015, 3(3), 495–498.CrossRefGoogle Scholar
  43. 43.
    Xu, L. Q.; Zhang, B.; Sun, M.; Hong, L.; Neoh, K. G.; Kang, E. T.; Fu, G. D. CO2-triggered fluorescence “turn-on” response of perylene diimide-containing poly(N,N-dimethylaminoethyl methacrylate). J. Mater. Chem. A 2013, 1(4), 1207–1212.CrossRefGoogle Scholar
  44. 44.
    Mabire, A. B.; Brouard, Q.; Pitto-Barry, A.; Williams, R. J.; Willcock, H.; Kirby, N.; Chapman, E.; O’Reilly, R. K. CO2/pH-responsive particles with built-in fluorescence read-out. Polym. Chem. 2016, 7(38), 5943–5948.CrossRefGoogle Scholar
  45. 45.
    Yu, B.; Zhao, Y. CO2-responsive fluorescent hyperbranched poly(ether amine)s. Polym. Chem. 2017, 8(28), 4132–4139.CrossRefGoogle Scholar
  46. 46.
    Wei, H.; Zhang, J.; Shi, N.; Liu, Y.; Zhang, B.; Zhang, J.; Wan, X. A recyclable polyoxometalate-based supramolecular chemosensor for efficient detection of carbon dioxide. Chem. Sci. 2015, 6(12), 7201–7205.CrossRefGoogle Scholar
  47. 47.
    Mitsukami, Y.; Donovan, M. S.; Lowe, A. B.; McCormick, C. L. Water-soluble polymers. 81. direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules 2001, 34(7), 2248–2256.CrossRefGoogle Scholar
  48. 48.
    Hu, B.; Henn, D. M.; Wright, R. A.; Zhao, B. Hybrid micellar hydrogels of a thermosensitive ABA triblock copolymer and hairy nanoparticles: effect of spatial location of hairy nanoparticles on gel properties. Langmuir 2014, 30(37), 11212–11224.CrossRefGoogle Scholar
  49. 49.
    Uchiyama, S.; Matsumura, Y.; de Silva, A. P.; Iwai, K. Fluorescent molecular thermometers based on polymers showing temperature-induced phase transitions and labeled with polarity-responsive benzofurazans. Anal. Chem. 2003, 75(21), 5926–5935.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yun Wang
    • 1
  • Meng Huo
    • 1
  • Min Zeng
    • 1
  • Lei Liu
    • 1
  • Qi-Quan Ye
    • 1
  • Xi Chen
    • 1
  • Dan Li
    • 1
  • Liao Peng
    • 1
  • Jin-Ying Yuan
    • 1
    Email author
  1. 1.Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations