Chinese Journal of Polymer Science

, Volume 37, Issue 1, pp 43–51 | Cite as

Amorphous and Crystallizable Thermoplastic Polyureas Synthesized through a One-pot Non-isocyanate Route

  • Jia-Long Ban
  • Su-Qing Li
  • Chen-Feng Yi
  • Jing-Bo Zhao
  • Zhi-Yuan Zhang
  • Jun-Ying Zhang


A simple one-pot non-isocyanate route for synthesizing thermoplastic polyureas is presented. In situ urethanization was conducted from the ring-opening reaction of ethylene carbonate with poly(propylene glycol) bis(2-aminopropyl ether) and hexanediamine, m-xylylenediamine, or diethylene glycol bis(3-aminopropyl) ether at 100 °C for 6 h under normal pressure. Melt transurethane polycondensation was successively conducted at 170 °C under a reduced pressure of 399 Pa for different time periods. A series of nonisocyanate thermoplastic polyureas (NI-TPUreas) were prepared. The NI-TPUreas were characterized by gel permeation chromatography, FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray diffraction, atomic force microscopy, and tensile test. NI-TPUreas exhibited Mn of up to 1.67 × 104 g/mol, initial decomposition temperature over 290 °C, and tensile strength of up to 32 MPa. Several crystallizable NI-TPUreas exhibited Tm exceeding 98 °C. NI-TPUreas with good thermal and mechanical properties were prepared through a green and simple one-pot non-isocyanate route.


Non-isocyanate route Thermoplastic polyureas One-pot method Sustainable synthesis Transurethane polycondensation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 21244006) and Beijing Natural Science Foundation (No. 2182056).

Supplementary material

10118_2018_2165_MOESM1_ESM.pdf (640 kb)
Amorphous and Crystallizable Thermoplastic Polyureas Synthesized through a One-pot Non-isocyanate Route


  1. 1.
    Delebecq, E.; Pascault, J. P.; Boutevin, B.; Ganachaud, F. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev. 2013, 113, 80–118.CrossRefGoogle Scholar
  2. 2.
    Ma, Z. W.; Hong, Y.; Nelson, D. M.; Pichamuthu, J. E.; Leeson, C. E.; Wagner, W. R. Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight, and composition on mechanical properties. Biomacromolecules. 2011, 12, 3265–3274.CrossRefGoogle Scholar
  3. 3.
    Ruan, C. S.; Hu, N.; Hu, Y.; Jiang, L. X.; Cai, Q. Q.; Wang, H. Y.; Pan, H. B.; Lu, W. W.; Wang, Y. L. Piperazine-based polyurethane-ureas with controllable degradation as potential bone scaffolds. Polymer. 2014, 55, 1020–1027.CrossRefGoogle Scholar
  4. 4.
    Kim, E. Y.; Lee, J. H.; Lee, D. J.; Lee, Y. H.; Lee, J. H.; Kim, H. D. Synthesis and properties of highly hydrophilic waterborne polyurethane-ureas containing various hardener content for waterproof breathable fabrics. J. Appl. Polym. Sci. 2013, 129, 1745–1751.CrossRefGoogle Scholar
  5. 5.
    Oprea, S.; Gradinariu, P.; Joga, A.; Oprea, V. Synthesis, structure and fungal resistance of sulfadiazine-based polyurethane ureas. Polym. Degrad. Stab. 2013, 98, 1481–1488.CrossRefGoogle Scholar
  6. 6.
    Tang, D. L.; Noordover, B. A. J.; Sablong, R. J.; Koning, C. E. Thermoplastic poly(urethane urea)s from novel, bio-based amorphous polyester diols. Macromol. Chem. Phys. 2012, 213, 2541–2549.CrossRefGoogle Scholar
  7. 7.
    Shirasaka, H.; Inoue, S. I.; Asai, K.; Okamoto, H. Polyurethane urea elastomer having monodisperse poly(oxytetramethylene) as a soft segment with a uniform hard segment. Macromolecules. 2000, 33, 2776–2778.CrossRefGoogle Scholar
  8. 8.
    Primeaux II, D. J. Polyurea elastomer technology: history, chemistry & basic formulating techniques. Primeaux Associates LLC, 2004, 1–20.Google Scholar
  9. 9.
    Mattia, J.; Painter, P. A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol). Macromolecules. 2007, 40, 1546–1554.CrossRefGoogle Scholar
  10. 10.
    Johnson, J. C.; Wanasekara, N. D.; Korley, L. T. J. Utilizing peptidic ordering in the design of hierarchical polyurethane/ureas. Biomacromolecules. 2012, 13, 1279–1286.CrossRefGoogle Scholar
  11. 11.
    Underhill, R. S.; DiLoreto, S.; DiLoreto, B. Development of polyureas with improved fire resistance. J. Fire Sci. 2012, 31, 211–226.CrossRefGoogle Scholar
  12. 12.
    Kathalewar, M. S.; Joshi, P. B.; Sabnis, A. S.; Malshe, V. C. Non-isocyanate polyurethanes: from chemistry to applications. RSC Adv. 2013, 3, 4110–4129.CrossRefGoogle Scholar
  13. 13.
    Tamami, B.; Sohn, S.; Wilkes, G. L. Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks. J. Appl. Polym. Sci. 2004, 92, 883–891.CrossRefGoogle Scholar
  14. 14.
    Annunziata, L.; Diallo, A. K.; Fouquay, S.; Michaud, G.; Simon, F.; Brusson, J. M.; Carpentier, J. F.; Guillaume, S. M. α,ω-Di(glycerol carbonate) telechelic polyesters and polyolefins as precursors to polyhydroxyurethanes: an isocyanate-free approach. Green Chem. 2014, 16, 1947–1956.CrossRefGoogle Scholar
  15. 15.
    Bähr, M.; Bitto, A.; Mülhaupt, R. Cyclic limonene dicarbonate as a new monomer for non-isocyanate oligo- and polyurethanes (NIPU) based upon terpenes. Green Chem. 2012, 14, 1447–1454.CrossRefGoogle Scholar
  16. 16.
    Besse, V.; Auvergne, R.; Carlotti, S.; Boutevin, G.; Otazaghine, B.; Caillol, S.; Pascault, J. P.; Boutevin, B. Synthesis of isosorbide based polyurethanes: an isocyanate free method. React. Funct. Polym. 2013, 73, 588–594.CrossRefGoogle Scholar
  17. 17.
    Maisonneuve, L.; Lamarzelle, O.; Rix, E.; Grau, E.; Cramail, H. Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s. Chem. Rev. 2015, 115, 12407–12439.CrossRefGoogle Scholar
  18. 18.
    Deepa, P.; Jayakannan, M. Solvent-free and nonisocyanate melt transurethane reaction for aliphatic polyurethanes and mechanistic aspects. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 2445–2458.CrossRefGoogle Scholar
  19. 19.
    Rokicki, G.; Piotrowska, A. A new route to polyurethanes from ethylene carbonate, diamines and diols. Polymer 2002, 43, 2927–2935.CrossRefGoogle Scholar
  20. 20.
    Ochiai, B.; Utsuno, T. Non-isocyanate synthesis and application of telechelic polyurethanes via polycondensation of diurethanes obtained from ethylene carbonate and diamines. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 525–533.CrossRefGoogle Scholar
  21. 21.
    Sharma, B.; Ubaghs, L.; Keul, H.; Höcker, H.; Loontjens, T.; van Benthem, R. Synthesis and characterization of alternating poly(amide urethane)s from ε-caprolactone, diamines and diphenyl carbonate. Polymer 2005, 46, 1775–1783.CrossRefGoogle Scholar
  22. 22.
    Li, C. G.; Li, S. Q.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y.; Yang, W. T. Synthesis and characterization of aliphatic poly(amide urethane)s having different nylon 6 segments through non-isocyanate route. J. Polym. Res. 2014, 21, 498, 1–10.Google Scholar
  23. 23.
    Tang, D. L.; Mulder, D.; Noordover, B. A. J.; Koning, C. E. Well-defined biobased segmented polyureas synthesis via a TBD-catalyzed isocyanate-free route. Macromol. Rapid Commun. 2011, 32, 1379–1385.CrossRefGoogle Scholar
  24. 24.
    Li, S. Q.; Sang, Z. H.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y.; Yang, W. T. Crystallizable and tough aliphatic thermoplastic polyureas synthesized through a non-isocyanate route. Ind. Eng. Chem. Res. 2016, 55, 1902–1911.CrossRefGoogle Scholar
  25. 25.
    Pan, W. C.; Lin, C. H.; Dai, S. A. High performance segmented polyurea by trans-esterification of diphenyl carbonates with aliphatic diamines. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 2781–2790.CrossRefGoogle Scholar
  26. 26.
    Pan, W. C.; Liao, K.; Lin, C. H.; Dai, S. A. Solvent-free processes to polyurea elastomers from diamines and diphenyl carbonate. J. Polym. Res. 2015, 22(6), 114.CrossRefGoogle Scholar
  27. 27.
    Li, S. Q.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y.; Yang, W. T. Aliphatic thermoplastic polyurethane-ureas and polyureas synthesized through a non-isocyanate route. RSC Adv. 2015, 5, 6843–6852.CrossRefGoogle Scholar
  28. 28.
    Deng, Y.; Li, S. Q.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y.; Yang, W. T. Crystallizable and tough aliphatic thermoplastic poly(ether urethane)s synthesized through a non-isocyanate route. RSC Adv. 2014, 4, 43406–43414.CrossRefGoogle Scholar
  29. 29.
    Allcock, H. R.; Lampe F. W.; Mark, J. E. “Contemporary Polymer Chemistry”, 3rd ed. Science Press, Beijing, 2003, Chapter 19, p. 600.Google Scholar
  30. 30.
    Liu, S. W.; Zhang, Y.; Xu, J. R. Synthesis and characterization of polyureas from aniline trimer with TDI, MDI and HDI as pH sensitive materials. Chin. J. Chem. 2011, 29, 1036–1040.CrossRefGoogle Scholar
  31. 31.
    Yin T. Synthesis and characterization of aliphatic polyesteramides mainly composed of alternating diester diamide units from N,N′-bis(2-hydroxyethyl)-oxamide and diacids. Polym. Eng. Sci. 2014, 54, 756–765.CrossRefGoogle Scholar
  32. 32.
    Li, S. Q.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y.; Yang, W. T. Synthesis and characterization of aliphatic segmented poly(ether amide urethane)s through a non-isocyanate route. RSC Adv. 2014, 4, 23720–23729.CrossRefGoogle Scholar
  33. 33.
    Deng, Y.; Li, S. Q.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y.; Yang, W. T. Aliphatic thermoplastic poly(ether urethane)s having long PEG sequences synthesized through a nonisocyanate route. Chinese J. Polym. Sci. 2015, 33, 880–889.CrossRefGoogle Scholar
  34. 34.
    Klinedinsta, D. B.; Yilgör, E.; Yilgör, I.; Beyerc, F. L.; Wilkes, G. L. Structure-property behavior of segmented polyurethaneurea copolymers based on an ethylene-butylene soft segment. Polymer 2005, 46, 10191–10201.CrossRefGoogle Scholar
  35. 35.
    Zhang, X. L.; Xiao, J. J.; Zhou, H. J.; Chen, X. Q.; Li, Y. T.; Qu, X. W. Synthesis and characterization of damping polyurethane derived from poly(neopentyl glycol propoxylated succinic acid). J. Polym. Res. 2015, 22(6), 108.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jia-Long Ban
    • 1
  • Su-Qing Li
    • 1
  • Chen-Feng Yi
    • 1
  • Jing-Bo Zhao
    • 1
  • Zhi-Yuan Zhang
    • 1
  • Jun-Ying Zhang
    • 1
  1. 1.Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of EducationCollege of Materials Science and Engineering, Beijing University of Chemical TechnologyBeijingChina

Personalised recommendations