Chinese Journal of Polymer Science

, Volume 36, Issue 12, pp 1375–1384 | Cite as

Carbon Fibers Decorated by Polyelectrolyte Complexes Toward Their Epoxy Resin Composites with High Fire Safety

  • Xiao-Hui Shi
  • Li Chen
  • Bo-Wen Liu
  • Jia-Wei Long
  • Ying-Jun Xu
  • Yu-Zhong Wang


The achievement of both robust fire-safety and mechanical properties is of vital requirement for carbon fiber (CF) composites. To this end, a facile interfacial strategy for fabricating flame-retardant carbon fibers decorated by bio-based polyelectrolyte complexes (PEC) consisting of chitosan (CH) and ammonium polyphosphate (APP) was developed, and its corresponding fire-retarded epoxy resin composites (EP/(PEC@CF)) without any other additional flame retardants were prepared. The decorated CFs were characterized by SEMEDX, XPS and XRD, indicating that the flame-retardant PEC coating was successfully constructed on the surface of CF. Thanks to the nitrogen- and phosphorous-containing PEC, the resulting composites exhibited excellent flame retardancy as the limiting oxygen index (LOI) increased from 31.0% of EP/CF to 40.5% and UL-94 V-0 rating was achieved with only 8.1 wt% PEC. EP/(PEC8.1@CF) also performed well in cone calorimetry with the decrease of peak-heat release rate (PHRR) and smoke production rate (SPR) by 50.0% and 30.4%, respectively, and the value of fire growth rate (FIGRA) was also reduced to 3.41 kW·m–2·s–1 from 4.84 kW·m–2·s–1, suggesting a considerably enhanced fire safety. Furthermore, SEM images of the burning residues revealed that the PEC coating exhibited the dominant flame-retardant activity in condensed phase via the formation of compact phosphorus-rich char. In addition, the impact strength of the composite was improved, together with no obvious deterioration of flexural properties and glass transition temperature. Taking advantage of the features, the PEC-decorated carbon fibers and the relevant composites fabricated by the cost-effective and facile strategy would bring more chances for widespread applications.


Fire safety Carbon fiber composites Epoxy resin Polyelectrolyte complexes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Financial supports by the National Natural Science Foundation of China (Nos. 51773137 and 51721091) and the Sichuan Province Youth Science and Technology Innovation Team (No. 2017TD0006) are sincerely acknowledged. The authors would also like to thank the Analysis and Testing Center of Sichuan University for the XPS measurements.


  1. 1.
    Yang, X. L.; Li, K.; Xu, M. Z.; Liu, X. B. Designing a phthalonitrile/benzoxazine blend for the advanced GFRP composite materials. Chinese J. Polym. Sci. 2017, 36(1), 106–112.CrossRefGoogle Scholar
  2. 2.
    Nunna, S.; Creighton, C.; Fox, B. L.; Naebe, M.; Maghe, M.; Tobin, M. J.; Bambery, K.; Vongsvivut, J.; Hameed, N. The effect of thermally induced chemical transformations on the structure and properties of carbon fibre precursors. J. Mater. Chem. A 2017, 5(16), 7372–7382.CrossRefGoogle Scholar
  3. 3.
    Xu, Y. J.; Wang, J.; Tan, Y.; Qi, M.; Chen, L.; Wang, Y. Z. A novel and feasible approach for one-pack flame-retardant epoxy resin with long pot life and fast curing. Chem. Eng. J. 2018, 337, 30–39.CrossRefGoogle Scholar
  4. 4.
    Shen, D.; Xu, Y. J.; Long, J. W.; Shi, X. H.; Chen, L.; Wang, Y. Z. Epoxy resin flame-retarded via a novel melamine-organophosphinic acid salt: thermal stability, flame retardancy and pyrolysis behavior. J. Anal. Appl. Pyrolysis 2017, 128, 54–63.CrossRefGoogle Scholar
  5. 5.
    Li, W. W.; Kang, H. L.; Xu, J.; Liu, R. G. Effects of ultra-high temperature treatment on the microstructure of carbon fibers. Chinese J. Polym. Sci. 2017, 35(6), 764–772.CrossRefGoogle Scholar
  6. 6.
    Xu, M. J.; Xia, S. Y.; Liu, C.; Li, B. Preparation of poly(phosphoric acid piperazine) and its application as an effective flame retardant for epoxy resin. Chinese J. Polym. Sci. 2018, 36(5), 655–664.CrossRefGoogle Scholar
  7. 7.
    Liao, D. J.; Xu, Q. K.; McCabe, R. W.; Babu, H. V.; Hu, X. P.; Pan, N.; Wang, D. Y.; Hull, T. R. Ferrocene-based nonphosphorus copolymer: synthesis, high-charring mechanism, and its application in fire retardant epoxy resin. Ind. Eng. Chem. Res. 2017, 56(44), 12630–12643.CrossRefGoogle Scholar
  8. 8.
    Rajaei, M.; Wang, D. Y.; Bhattacharyya, D. Combined effects of ammonium polyphosphate and talc on the fire and mechanical properties of epoxy/glass fabric composites. Ind. Eng. Chem. Res. 2017, 113, 381–390.Google Scholar
  9. 9.
    Xu, Y. J.; Chen, L.; Rao, W. H.; Qi, M.; Guo, D. M.; Liao, W.; Wang, Y. Z. Latent curing epoxy system with excellent thermal stability, flame retardancy and dielectric property. Chem. Eng. J. 2018, 347, 223–232.CrossRefGoogle Scholar
  10. 10.
    Agrawal, S.; Narula, A. K. Synthesis, characterization of phosphorus containing diamide-diimide-tetraamines based on L-tryptophan amino acid and their effect on flame retardancy of epoxy resins. Chinese J. Polym. Sci. 2014, 32(2), 197–208.CrossRefGoogle Scholar
  11. 11.
    Aschberger, K.; Campia, I.; Pesudo, L. Q.; Radovnikovic, A.; Reina, V. Chemical alternatives assessment of different flame retardants-A case study including multi-walled carbon nanotubes as synergist. Environ. Int. 2017, 101, 27–45.CrossRefGoogle Scholar
  12. 12.
    Curran, I. H.; Liston, V.; Nunnikhoven, A.; Caldwell, D.; Scuby, M. J.; Pantazopoulos, P.; Rawn, D. F.; Coady, L.; Armstrong, C.; Lefebvre, D. E. Toxicologic effects of 28-day dietary exposure to the flame retardant 1,2-dibromo-4-(1,2- dibromoethyl)-cyclohexane (TBECH) in F344 Rats. Toxicology 2017, 377, 1–13.CrossRefGoogle Scholar
  13. 13.
    Liao, S. F.; Deng, C.; Huang, S. C.; Cao, J. Y.; Wang, Y. Z. An efficient halogen-free flame retardant for polyethylene: piperazinemodified ammonium polyphosphates with different structures. Chinese J. Polym. Sci. 2016, 34(11), 1339–1353.CrossRefGoogle Scholar
  14. 14.
    Jian, R.; Wang, P.; Duan, W.; Wang, J.; Zheng, X.; Weng, J. Synthesis of a novel P/N/S-containing flame retardant and its application in epoxy resin: thermal property, flame retardance, and pyrolysis behavior. Ind. Eng. Chem. Res. 2016, 55(44), 11520–11527.CrossRefGoogle Scholar
  15. 15.
    Rao, W. H.; Xu, H. X.; Xu, Y. J.; Qi, M.; Liao, W.; Xu, S.; Wang, Y. Z. Persistently flame-retardant flexible polyurethane foams by a novel phosphorus-containing polyol. Chem. Eng. J. 2018, 343, 198–206.CrossRefGoogle Scholar
  16. 16.
    Sun, J.; Yu, Z.; Wang, X.; Wu, D. Synthesis and performance of cyclomatrix polyphosphazene derived from trispirocyclotriphosphazene as a halogen-free nonflammable material. ACS Sustain. Chem. Eng. 2013, 2(2), 231–238.CrossRefGoogle Scholar
  17. 17.
    Wang, W.; Wen, P.; Zhan, J.; Hong, N.; Cai, W.; Gui, Z.; Hu, Y. Synthesis of a novel charring agent containing pentaerythritol and triazine structure and its intumescent flame retardant performance for polypropylene. Polym. Degrad. Stab. 2017, 144, 454–463.CrossRefGoogle Scholar
  18. 18.
    Wang, X.; Zhou, S.; Guo, W. W.; Wang, P. L.; Xing, W.; Song, L.; Hu, Y. Renewable cardanol-based phosphate as a flame retardant toughening agent for epoxy resins. ACS Sustain. Chem. Eng. 2017, 5(4), 3409–3416.Google Scholar
  19. 19.
    Du S. L.; Lin X. B.; Jian, R. K.; Deng C.; Wang Y. Z. Flameretardant wrapped ramie fibers towards suppressing “candlewick effect” of polypropylene/ramie fiber composites. Chinese J. Polym. Sci. 2015, 33(1), 84–94.CrossRefGoogle Scholar
  20. 20.
    Tai, Q.; Hu, Y.; Yuen, R. K. K.; Song, L.; Lu, H. Synthesis, structure-property relationships of polyphosphoramides with high char residues. J. Mater. Chem. 2011, 21(18), 6621–6627.CrossRefGoogle Scholar
  21. 21.
    Jiang, S.; Shi, Y.; Qian, X.; Xu, H.; Lo, S.; Gui, Z. Synthesis of a novel phosphorus- and nitrogen-containing acrylate and its performance as an intumescent flame retardant for epoxy acrylate. Ind. Eng. Chem. Res. 2013, 52(49), 17442–17450.CrossRefGoogle Scholar
  22. 22.
    Tan, Y.; Shao, Z. B.; Chen, X. F.; Long, J. W.; Chen, L.; Wang, Y. Z. Novel multifunctional organic-inorganic hybrid curing agent with high flame-retardant efficiency for epoxy resin. ACS Appl. Mater. Interfaces 2015, 7(32), 17919–17928.CrossRefGoogle Scholar
  23. 23.
    Tan, Y.; Shao, Z. B.; Yu, L. X.; Xu, Y. J.; Rao, W. H.; Chen, L.; Wang, Y. Z. Polyethyleneimine modified ammonium polyphosphate toward polyamine-hardener for epoxy resin: Thermal stability, flame retardancy and smoke suppression. Polym. Degrad. Stab. 2016, 131, 62–70.CrossRefGoogle Scholar
  24. 24.
    Tan, Y.; Shao, Z. B.; Yu, L. X.; Long, J. W.; Qi, M.; Chen, L.; Wang, Y. Z. Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin: flame retardance, curing behavior and mechanical property. Polym. Chem. 2016, 7(17), 3003–3012.CrossRefGoogle Scholar
  25. 25.
    Li, C.; Kang, N. J.; Labrandero, S. D.; Wan, J.; González, C.; Wang, D. Y. Synergistic effect of carbon nanotube and polyethersulfone on flame retardancy of carbon fiber reinforced epoxy composites. Ind. Eng. Chem. Res. 2013, 53(3), 1040–1047.CrossRefGoogle Scholar
  26. 26.
    Hu, S.; Song, L.; Pan, H.; Hu, Y.; Gong, X. Thermal properties and combustion behaviors of flame retarded epoxy acrylate with a chitosan based flame retardant containing phosphorus and acrylate structure. J. Anal. Appl. Pyrolysis 2012, 97, 109–115.CrossRefGoogle Scholar
  27. 27.
    Liu, X.; Gu, X.; Sun, J.; Zhang, S. Preparation and characterization of chitosan derivatives and their application as flame retardants in thermoplastic polyurethane. Carbohydr. Polym. 2017, 167, 356–363.CrossRefGoogle Scholar
  28. 28.
    Chen, C.; Gu, X.; Jin, X.; Sun, J.; Zhang, S. The effect of chitosan on the flammability and thermal stability of polylactic acid/ammonium polyphosphate biocomposites. Carbohydr. Polym. 2017, 157, 1586–1593.CrossRefGoogle Scholar
  29. 29.
    Yang, J. C.; Cao, Z. J.; Wang, Y. Z.; Schiraldi, D. A. Ammonium polyphosphate-based nanocoating for melamine foam towards high flame retardancy and anti-shrinkage in fire. Polymer 2015, 66, 86–93.CrossRefGoogle Scholar
  30. 30.
    Deng, S. B.; Liao, W.; Yang, J. C.; Cao, Z.; Wang, Y. Z. Flame-retardant and smoke-suppressed silicone foams with chitosan-based nanocoatings. Ind. Eng. Chem. Res. 2016, 55(27), 7239–7248.CrossRefGoogle Scholar
  31. 31.
    Amin, K. A. M.; Panhuis, M. I. H. Polyelectrolyte complex materials from chitosan and gellan gum. Carbohydr. Polym. 2011, 86(1), 352–358.CrossRefGoogle Scholar
  32. 32.
    Sukhishvili, S. A.; Kharlampieva, E.; Izumrudov, V. Where polyelectrolyte multilayers and polyelectrolyte complexes meet. Macromolecules 2006, 39(26), 8873–8881.CrossRefGoogle Scholar
  33. 33.
    Yang, J. C.; Liao, W.; Deng, S. B.; Cao, Z. J.; Wang, Y. Z. Flame retardation of cellulose-rich fabrics via a simplified layer-by-layer assembly. Carbohydr. Polym. 2016, 151, 434–440.CrossRefGoogle Scholar
  34. 34.
    Shao, Z. B.; Deng, C.; Tan, Y.; Yu, L.; Chen, M. J.; Chen, L.; Wang, Y. Z. Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame retardant for polypropylene. J. Mater. Chem. A 2014, 2(34), 13955–13965.CrossRefGoogle Scholar
  35. 35.
    Kong, Q. Q.; Liu, Z.; Gao, J. G.; Chen, C. M.; Zhang, Q.; Zhou, G.; Tao, Z. C.; Zhang, X. H.; Wang, M. Z.; Li, F. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader. Adv. Funct. Mater. 2014, 24(27), 4222–4228.CrossRefGoogle Scholar
  36. 36.
    Koester, K. J.; Ager Iii, J.; Ritchie, R. The true toughness of human cortical bone measured with realistically short cracks. Nat. Mater. 2008, 7(8), 672–677.CrossRefGoogle Scholar
  37. 37.
    Ladani, R. B.; Ravindran, A. R.; Wu, S.; Pingkarawat, K.; Kinloch, A. J.; Mouritz, A. P.; Ritchie, R. O.; Wang, C. H. Multi-scale toughening of fibre composites using carbon nanofibres and z-pins. Compos. Sci. Technol. 2016, 131, 98–109.CrossRefGoogle Scholar
  38. 38.
    Zhao, M.; Meng, L.; Ma, L.; Wu, G.; Xie, F.; Ma, L.; Wang, W.; Jiang, B.; Huang, Y. Stepwise growth of melamine-based dendrimers onto carbon fibers and the effects on interfacial properties of epoxy composites. Compos. Sci. Technol. 2017, 138, 144–150.CrossRefGoogle Scholar
  39. 39.
    Wu, G.; Ma, L.; Liu, L.; Wang, Y.; Xie, F.; Zhong, Z.; Zhao, M.; Jiang, B.; Huang, Y. Interface enhancement of carbon fiber reinforced methylphenylsilicone resin composites modified with silanized carbon nanotubes. Mater. Design 2016, 89, 1343–1349.CrossRefGoogle Scholar
  40. 40.
    Zhang, Z.; Yuan, L.; Liang, G.; Gu, A. A strategy and mechanism of fabricating flame retarding glass fiber fabric reinforced vinyl ester composites with simultaneously improved thermal stability, impact and interlaminar shear strengths. Polym. Degrad. Stab. 2016, 125, 49–58.CrossRefGoogle Scholar
  41. 41.
    Zhao, F.; Huang, Y.; Liu, L.; Bai, Y.; Xu, L. Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites. Carbon 2011, 49(8), 2624–2632.CrossRefGoogle Scholar
  42. 42.
    González-Domínguez, J. M.; Ansón-Casaos, A.; Díez-Pascual, A. M.; Ashrafi, B.; Naffakh, M.; Backman, D.; Stadler, H.; Johnston, A.; Gómez, M.; Martinez, M. T. Solvent-free preparation of high-toughness epoxy-SWNT composite materials. ACS Appl. Mater. Interfaces 2011, 3(5), 1441–1450.CrossRefGoogle Scholar
  43. 43.
    Lin, M. S.; Lee, S. T. Mechanical behaviours of fully and semi-interpenetrating polymer networks based on epoxy and acrylics. Polymer 1997, 38(1), 53–58.CrossRefGoogle Scholar
  44. 44.
    Zhao, X.; Yang, L.; Martin, F. H.; Zhang, X. Q.; Wang, R.; Wang, D. Y. Influence of phenylphosphonate based flame retardant on epoxy/glass fiber reinforced composites (GRE): Flammability, mechanical and thermal stability properties. Compos. Part B- Eng. 2017, 110, 511–519.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiao-Hui Shi
    • 1
  • Li Chen
    • 1
  • Bo-Wen Liu
    • 1
  • Jia-Wei Long
    • 1
  • Ying-Jun Xu
    • 1
  • Yu-Zhong Wang
    • 1
  1. 1.School of Chemical Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduChina

Personalised recommendations