Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 1, pp 52–58 | Cite as

Humidity-responsive Bilayer Actuators Comprised of Porous and Nonporous Poly(acrylic acid)/Poly(allylamine hydrochloride) Films

  • Miao Zheng
  • Tang-Jie Long
  • Xiao-Ling Chen
  • Jun-Qi Sun
Article
  • 58 Downloads

Abstract

Bilayer humidity-responsive actuators are generally composed of actuating and supporting layers of different materials with largely different wettability. Such kinds of bilayer actuators suffer from low adhesive force between the two layers during usage. This study demonstrates the preparation of humidity-responsive bilayer actuators that have the same materials in the actuating and supporting layers to avoid the adhesive issue. The bilayer actuators consist of a porous poly(acrylic acid) (PAA)/poly(allylamine hydrochloride) (PAH) layer and a nonporous PAA/PAH layer that are fabricated by exponentially layer-by-layer assembly method. At a high/low relative humidity (RH), the nonporous PAA/PAH layer can efficiently expand/shrink by absorbing/desorbing water while the volume expansion/shrinkage of the porous PAA/PAH layer in an environment with changed humidity is significantly suppressed by the micrometer-sized pores. The largely different expansion/shrinkage of the nonporous and porous PAA/PAH layers when subjected to humidity changes enables rapid and reversible rolling/unrolling motions of the bilayer actuator. The bilayer actuator shows a faster rolling speed and a larger bending curvature when subjected to a larger humidity increase.

Keywords

Layer-by-layer assembly Materials science Porous films Surface chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Basic Research Program (No. 2013CB834503) and the National Natural Science Foundation of China (No. 21225419).

Supplementary material

10118_2018_2162_MOESM1_ESM.mpg (5 mb)
Supplementary material, approximately 4.96 KB.
10118_2018_2162_MOESM2_ESM.mpg (5.4 mb)
Supplementary material, approximately 5.36 MB.
10118_2018_2162_MOESM3_ESM.mpg (4.3 mb)
Supplementary material, approximately 4.34 MB.

References

  1. 1.
    Zhao, Z. G.; Xu, Y. C.; Fang, R. C.; Liu, M. J. Bioinspired adaptive gel materials with synergistic heterostructures. Chinese J. Polym. Sci. 2018, 26(6), 683–696.CrossRefGoogle Scholar
  2. 2.
    Uh, K.; Yoon, B.; Lee, C. W.; Kim, J. M. An electrolyte-free conducting polymer actuator that displays electrothermal bending and flapping wing motions under a magnetic field. ACS Appl. Mater. Interfaces 2016, 8(2), 1289–1296.CrossRefGoogle Scholar
  3. 3.
    Chen, N.; Hu, Y.; Zhao, Y.; Qu, L. Progress in controllable preparation and electrochemical applications of graphene/poly(pyrrole) composites. Acta Polymerica Sinica (in Chinese) 2014, 21(6), 752–760.Google Scholar
  4. 4.
    Zhang, L.; Naumov, P. Light-and humidity-induced motion of an acidochromic film. Angew. Chem. Int. Ed. 2015, 54(30), 8642–8647.CrossRefGoogle Scholar
  5. 5.
    Sattar, R.; Kausar, A.; Siddiq, M. Thermal, mechanical and electrical studies of novel shape memory polyurethane/ polyaniline blends. Chinese J. Polym. Sci. 2015, 33(9), 1313–1324.CrossRefGoogle Scholar
  6. 6.
    Liao, J. X.; Huang, J. H.; Wang, T.; Sun, W. W.; Tong, Z. Rapid shape memory and pH-modulated spontaneous actuation of dopamine containing hydrogels. Chinese J. Polym. Sci. 2017, 35(10), 1297–1306.CrossRefGoogle Scholar
  7. 7.
    Ma, M.; Guo, L.; Anderson, D. G.; Langer, R. Bio-inspired polymer composite actuator and generator driven by water gradients. Science 2013, 339(6116), 186–189.CrossRefGoogle Scholar
  8. 8.
    Liu, J. C.; Shang, Y. Y.; Zhang, D. J.; Xie, Z.; Hu, R. X.; Wang, J. X. Single-material solvent-sensitive fluorescent actuator from carbon dots inverse opals based on gradient dewetting. Chinese J. Polym. Sci. 2017, 35(9), 1043–1050.CrossRefGoogle Scholar
  9. 9.
    Islam, M. R.; Li, X.; Smyth, K.; Serpe, M. J. Polymer-based muscle expansion and contraction. Angew. Chem. Int. Ed. 2013, 52(39), 10330–10333.CrossRefGoogle Scholar
  10. 10.
    Chen, X.; Goodnight, D.; Gao, Z.; Cavusoglu, A. H.; Sabharwal, N.; DeLay, M.; Driks, A.; Sahin, O. Scaling up nanoscale water-driven energy conversion into evaporationdriven engines and generators. Nat. Commun. 2015, 6, 7346–7352.CrossRefGoogle Scholar
  11. 11.
    Keplinger, C.; Sun, J. Y.; Foo, C. C.; Rothemund, P.; Whitesides, G. M.; Suo, Z. Stretchable, transparent, ionic conductors. Science 2013, 341(6149), 984–987.CrossRefGoogle Scholar
  12. 12.
    Zhu, C. H.; Lu, Y.; Peng, J.; Chen, J. F.; Yu, S. H. Photothermally sensitive poly(n-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves. Adv. Funct. Mater. 2012, 22(19), 4017–4022.CrossRefGoogle Scholar
  13. 13.
    Feinberg, A. W.; Feigel, A.; Shevkoplyas, S. S.; Sheehy, S.; Whitesides, G. M.; Parker, K. K. Muscular thin films for building actuators and powering devices. Science 2007, 317(5843), 1366–1370.CrossRefGoogle Scholar
  14. 14.
    Cheng, H.; Liu, J.; Zhao, Y.; Hu, C.; Zhang, Z.; Chen, N.; Jiang, L.; Qu, L. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew. Chem. Int. Ed. 2013, 52(40), 10482–10486.CrossRefGoogle Scholar
  15. 15.
    Lee, S. W.; Prosser, J. H.; Purohit, P. K.; Lee, D. Bioinspired hygromorphic actuator exhibiting controlled locomotion. ACS Macro Lett. 2013, 2(11), 960–965.CrossRefGoogle Scholar
  16. 16.
    Yamada, M.; Kondo, M.; Mamiya, J.; Yu, Y.; Kinoshita, M.; Barrett, C. J.; Ikeda, T. Photomobile polymer materials: towards light-driven plastic motors. Angew. Chem. Int. Ed. 2008, 47(27), 4986–4988.CrossRefGoogle Scholar
  17. 17.
    Mu, J.; Hou, C.; Zhu, B.; Wang, H.; Li, Y.; Zhang, Q. A multiresponsive water-driven actuator with instant and powerful performance for versatile applications. Sci. Rep. 2015, 5, 9503–9509.CrossRefGoogle Scholar
  18. 18.
    Li, M. H.; Keller, P.; Li, B.; Wang, X.; Brunet, M. Light-driven side-on nematic elastomer actuators. Adv. Mater. 2003, 15(7–8), 569–572.CrossRefGoogle Scholar
  19. 19.
    Yu, Y.; Maeda, T.; Mamiya, J.; Ikeda, T. Photomechanical effects of ferroelectric liquid-crystalline elastomers containing azobenzene chromophores. Angew. Chem. Int. Ed. 2007, 46(6), 881–883.CrossRefGoogle Scholar
  20. 20.
    Camacho-Lopez, M.; Finkelmann, H.; Palffy-Muhoray, P.; Shelley, M. Fast liquid-crystal elastomer swims into the dark. Nat. Mater. 2004, 3(5), 307–310.CrossRefGoogle Scholar
  21. 21.
    Ma, Y.; Zhang, Y.; Wu, B.; Sun, W.; Li, Z.; Sun, J. Polyelectrolyte multilayer films for building energetic walking devices. Angew. Chem. Int. Ed. 2011, 50(28), 6254–6257.CrossRefGoogle Scholar
  22. 22.
    Ma, Y.; Sun, J. Humido-and thermo-responsive free-standing films mimicking the petals of the morning glory flower. Chem. Mater. 2009, 21(5), 898–902.CrossRefGoogle Scholar
  23. 23.
    Chen, X.; Sun, J. Fabrication of macroporous films with closed honeycomb-like pores from exponentially growing layer-by-layer assembled polyelectrolyte multilayers. Chem. Asian J. 2014, 9(8), 2063–2067.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Miao Zheng
    • 1
  • Tang-Jie Long
    • 1
  • Xiao-Ling Chen
    • 1
  • Jun-Qi Sun
    • 1
  1. 1.State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin UniversityChangchunChina

Personalised recommendations