Chinese Journal of Polymer Science

, Volume 37, Issue 1, pp 89–93 | Cite as

Thermodynamics of Aromatic Cyclic Ester Polymerization in Bulk

  • Chong He
  • Xiang Zhu
  • Xiao-Hong Li
  • Xiao-Ming Yang
  • Ying-Feng TuEmail author


We present here the thermodynamic investigation of in situ cascade polycondensation-coupling ring-opening polymerization (PROP) for three cyclic aromatic ester monomers, i.e., cyclic oligo(2-methyl-1,3-propylene terephthalate)s (COMPTs), cyclic oligo(neopentylene terephthalate)s (CONTs) and cyclic oligo(2-methyl-2-propyl-1,3-propylene terephthalate)s (COMPPTs). The equibrium monomer to polymer weight ratio in bulk at different polymerization temperatures for each monomer was estimated by the size exclusion chromatography (SEC), and the thermodynamic parameters were estimated by Dainton equation. Quite different from the thermodynamics of aliphatic lactones polymerization, which is an exothermic process with entropy reduction, our results showed the polymerization thermodynamics for three cyclic aromatic ester monomers was a weak exothermic process with slight entropy increment, i.e., a both enthalpy and entropy driving process. Among them, CONTs showed the largest value of enthalpy change, due to its symmetric dimethyl substitution on β-position of propandiol segments.


Lactone Polyester Polycondensation-coupling ring-opening polymerization Thermodynamic parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 21474067, 21774090), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.


  1. 1.
    Zhao, W.; Cui, D.; Liu, X.; Chen, X. Facile synthesis of hydroxyl-ended, highly stereoregular, star-shaped poly(lactide) from immortal ROP of rac-lactide and kinetics study. Macromolecules 2010, 43(16), 6678–6684CrossRefGoogle Scholar
  2. 2.
    Pascual, A.; Sardon, H.; Ruipérez, F.; Gracia, R.; Sudam, P.; Veloso, A.; Mecerreyes, D. Experimental and computational studies of ring-opening polymerization of ethylene brassylate macrolactone and copolymerization with e-caprolactone and TBD-guanidine organic catalyst. J. Polym. Sci., Part A: Polym. Chem. 2015, 53(4), 552–561CrossRefGoogle Scholar
  3. 3.
    Jitonnom, J.; Meelua, W. Cationic ring-opening polymerization of cyclic carbonates and lactones by group 4 metallocenes: a theoretical study on mechanism and ring-strain effects. J. Theor. Comput. Chem. 2016, 16(01), 1750003CrossRefGoogle Scholar
  4. 4.
    Lu, M.; Zhu, X.; Li, X.; Yang, X.; Tu, Y. Synthesis of cyclic oligo(ethylene adipate)s and their melt polymerization to poly(ethylene adipate). Chinese J. Polym. Sci. 2017, 35(9), 1051–1060CrossRefGoogle Scholar
  5. 5.
    Song, Q.; Hu, S.; Zhao, J.; Zhang, G. Organocatalytic copolymerization of mixed type monomers. Chinese J. Polym. Sci. 2017, 35(5), 581–601CrossRefGoogle Scholar
  6. 6.
    Pascual, A.; Sardon, H.; Veloso, A.; Ruipérez, F.; Mecerreyes, D. Organocatalyzed synthesis of aliphatic polyesters from ethylene brassylate: a cheap and renewable macrolactone. ACS Macro Lett. 2014, 3(9), 849–853CrossRefGoogle Scholar
  7. 7.
    Pascual, A.; Sardon, H.; Ruipérez, F.; Gracia, R.; Sudam, P.; Veloso, A.; Mecerreyes, D. Experimental and computational studies of ring-opening polymerization of ethylene brassylate macrolactone and copolymerization with e-caprolactone and TBD-guanidine organic catalyst. J. Polym. Sci., Part A: Polym. Chem. 2015, 53(4), 552–561CrossRefGoogle Scholar
  8. 8.
    Ofstead, E. A.; Calderon, N. Equilibrium ring-opening polymerization of mono-and multicyclic unsaturated monomers. Makromol. Chem. 1972, 154(1), 21–34CrossRefGoogle Scholar
  9. 9.
    Duda, A.; Kowalski, A.; Libiszowski, J.; Penczek, S. Thermodynamic and kinetic polymerizability of cyclic esters. Macromol. Symp. 2005, 224(1), 71–84CrossRefGoogle Scholar
  10. 10.
    Li, X.; Li, H.; Zhao, Y.; Tang, X.; Ma, S.; Gong, B.; Li, M. Facile synthesis of well-defined hydrophilic polyesters as degradable poly(ethylene glycol)-like biomaterials. Polym. Chem. 2015, 6(36), 6452–6456CrossRefGoogle Scholar
  11. 11.
    Schneiderman, D. K.; Hillmyer, M. A. Aliphatic polyester block polymer design. Macromolecules 2016, 49(7), 2419–2428CrossRefGoogle Scholar
  12. 12.
    Steele, R. in “Polyester: 50 years of achievement”, Brunnschweiler, D. and Hearle, J. S. (Eds), The Textile Institute, manchester, UK, 1993, pp. 48–51Google Scholar
  13. 13.
    Turner, S. R.; Voit, B. I.; Mourey, T. H. All-aromatic hyperbranched polyesters with phenol and acetate end groups: synthesis and characterization. Macromolecules 1993, 26(17), 4617–4623CrossRefGoogle Scholar
  14. 14.
    Brunelle, D. J.; Boden, E. P.; Shannon, T. G. Remarkably selective formation of macrocyclic aromatic carbonates: versatile new intermediates for the synthesis of aromatic polycarbonates. J. Am. Chem. Soc. 1990, 112(6), 2399–2402CrossRefGoogle Scholar
  15. 15.
    Brunelle, D. J.; Bradt, J. E.; Serth-Guzzo, J.; Takekoshi, T.; Evans, T. L.; Pearce, E. J.; Wilson, P. R. Semicrystalline polymers via ring-opening polymerization: preparation and polymerization of alkylene phthalate cyclic oligomers. Macromolecules 1998, 31(15), 4782–4790CrossRefGoogle Scholar
  16. 16.
    Brunelle, D. J. Cyclic oligomer chemistry. J. Polym. Sci., Part A: Polym. Chem. 2008, 46(4), 1151–1164CrossRefGoogle Scholar
  17. 17.
    Monvisade, P.; Loungvanidprapa, P. Synthesis of poly(ethylene terephthalate-co-isophthalate) via ring-opening polymerization of their cyclic oligomers. J. Polym. Res. 2008, 15(5), 381–387CrossRefGoogle Scholar
  18. 18.
    Conzatti, L.; Utzeri, R.; Hodge, P.; Stagnaro, P. A novel tinbased imidazolium-modified montmorillonite catalyst for the preparation of poly(butylene terephthalate)-based nanocomposites using in situ entropically-driven ring-opening polymerization. RSC Adv. 2015, 5(8), 6222–6231CrossRefGoogle Scholar
  19. 19.
    Pepels, M. P. F.; van der Sanden, F.; Gubbels, E.; Duchateau, R. Catalytic ring-opening (co)polymerization of semiaromatic and aliphatic (macro)lactones. Macromolecules 2016, 49(12), 4441–4451CrossRefGoogle Scholar
  20. 20.
    Carlos Morales-Huerta, J.; Martinez de Ilarduya, A.; Munoz-Guerra, S. Poly(alkylene 2, 5-furandicarboxylate)s (PEF and PBF) by ring opening polymerization. Polymer 2016, 87, 148–158CrossRefGoogle Scholar
  21. 21.
    Sousa, A. F.; Guigo, N.; Pozycka, M.; Delgado, M.; Soares, J.; Mendonca, P. V.; Coelho, J. F. J.; Sbirrazzuoli, N.; Silvestre, A. J. D. Tailored design of renewable copolymers based on poly(1, 4-butylene 2, 5-furandicarboxylate) and poly(ethylene glycol) with refined thermal properties. Polym. Chem. 2018, 9(6), 722–731CrossRefGoogle Scholar
  22. 22.
    Morales-Huerta, J. C.; Ilarduya, A.; Munoz-Guerra, S. Blocky poly(e-caprolactone-co-butylene 2, 5-furandicarboxylate) copolyesters via enzymatic ring opening polymerization. J. Polym. Sci., Part A: Polym. Chem. 2018, 56(3), 290–299CrossRefGoogle Scholar
  23. 23.
    Wu, J.; Xie, H.; Wu, L.; Li, B.; Dubois, P. DBU-catalyzed biobased poly(ethylene 2, 5-furandicarboxylate) polyester with rapid melt crystallization: synthesis, crystallization kinetics and melting behavior. RSC Adv. 2016, 6(103), 101578–101586CrossRefGoogle Scholar
  24. 24.
    Rabnawaz, M.; Wyman, I.; Auras, R.; Cheng, S. A roadmap towards green packaging: the current status and future outlook for polyesters in the packaging industry. Green Chem. 2017, 19(20), 4737–4753CrossRefGoogle Scholar
  25. 25.
    Xu, Q.; Chen, J.; Huang, W.; Qu, T.; Li, X.; Li, Y.; Yang, X.; Tu, Y. One pot, one feeding step, two-stage polymerization synthesis and characterization of (PTT-è-PTMO-è-PTT)n multiblock copolymers. Macromolecules 2013, 46(18), 7274–7281CrossRefGoogle Scholar
  26. 26.
    Chen, J.; Chen, D.; Huang, W.; Yang, X.; Li, X.; Tu, Y.; Zhu, X. A one pot facile synthesis of poly(butylene terephthalate)- block-poly(tetramethylene oxide) alternative multiblock copolymers via PROP method. Polymer 2016, 107, 29–36CrossRefGoogle Scholar
  27. 27.
    Zhu, X.; Gu, J.; Li, X.; Yang, X.; Wang, L.; Li, Y.; Li, H.; Tu, Y. PROP: an in situ cascade polymerization method for the facile synthesis of polyesters. Polym. Chem. 2017, 8(12), 1953–1962CrossRefGoogle Scholar
  28. 28.
    Zhang, M.; Gu, J.; Zhu, X.; Gao, L.; Li, X.; Yang, X.; Tu, Y.; Li, C. Y. Synthesis of poly(butylene terephthalate)-blockpoly( ethylene oxide)-block-poly(propylene oxide)-blockpoly( ethylene oxide) multiblock terpolymers via a facile PROP method. Polymer 2017, 130, 199–208CrossRefGoogle Scholar
  29. 29.
    Chen, J.; Huang, W.; Xu, Q.; Tu, Y.; Zhu, X.; Chen, E. PBT-b- PEO-b-PBT triblock copolymers: Synthesis, characterization and double-crystalline properties. Polymer 2013, 54(25), 6725–6731CrossRefGoogle Scholar
  30. 30.
    Pepels, M. P.; van der Sanden, F.; Gubbels, E.; Duchateau, R. Catalytic ring-opening (co) polymerization of semiaromatic and aliphatic (macro) lactones. Macromolecules 2016, 49(12), 4441–4451CrossRefGoogle Scholar
  31. 31.
    Duda, A.; Penczek, S. Thermodynamics, kinetics, and mechanisms of cyclic esters polymerization. In “Polymers from Renewable Resources, American Chemical Society” 2001; Vol. 764, pp 160–198CrossRefGoogle Scholar
  32. 32.
    Nishida, H.; Yamashita, M.; Endo, T.; Tokiwa, Y. Equilibrium polymerization behavior of 1, 4-dioxan-2-one in bulk. Macromolecules 2000, 33(19), 6982–6986CrossRefGoogle Scholar
  33. 33.
    Hejl, A.; Scherman, O. A.; Grubbs, R. H. Ring-opening metathesis polymerization of functionalized low-strain monomers with ruthenium-based catalysts. Macromolecules 2005, 38(17), 7214–7218CrossRefGoogle Scholar
  34. 34.
    Burch, R. R.; Lustig, S. R.; Spinu, M. Synthesis of cyclic oligoesters and their rapid polymerization to high molecular weight. Macromolecules 2000, 33(14), 5053–5064CrossRefGoogle Scholar
  35. 35.
    Scheirs, J. and Long, T. E. “Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters”, John Wiley & Sons, 2005Google Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chong He
    • 1
  • Xiang Zhu
    • 1
  • Xiao-Hong Li
    • 1
  • Xiao-Ming Yang
    • 1
  • Ying-Feng Tu
    • 1
    Email author
  1. 1.Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina

Personalised recommendations