Chinese Journal of Polymer Science

, Volume 36, Issue 12, pp 1368–1374 | Cite as

Light Electrospun Polyvinylpyrrolidone Blanket for Low Frequencies Sound Absorption

  • Joshua Avossa
  • Francesco BrandaEmail author
  • Francesco Marulo
  • Giuseppe Petrone
  • Stefano Guido
  • Giovanna Tomaiuolo
  • Aniello Costantini
Open Access


Light polymeric soundproofing materials (density = 63 kg/m3) of interest for the transportation industry were fabricated through electrospinning. Blankets of electrospun polyvinylpyrrolidone (average fiber diameter = (1.6 ± 0.5) or (2.8 ± 0.5) μm) were obtained by stacking disks of electrospun mats. The sound absorption coefficients were measured using the impedance tube instrument based on ASTM E1050 and ISO 10534–2. For a given set of disks (from a minimum of 6) the sound absorption coefficient changed with the frequency (in the range 200–1600 Hz) following a bell shape curve with a maximum (where the coefficient is greater than 0.9) that shifts to lower frequencies at higher piled disks number and greater fiber diameter. This work showed that electrospinning produced sound absorbers with reduced thickness (2–3 cm) and excellent sound-absorption properties in the low and medium frequency range.


Electrospinning Polyvinylpyrrolidone (PVP) Sound absorption Impedance tube 



This work has been partially supported and funded by the Department of Education, Research, Labour, of the Cultural Politics and Social Politics of Campania Region under the research program “MITO-Improvement and Innovation of “Thermoacoustical Material for Aeronautical Applications” PO FESR Campania 2007/2013, OO 2.1; CUP: B68C12000640007, Code SMILE: 150. This support is greatly appreciated and acknowledged by the authors. Professor Gino Iannace of the Dept. of “Architettura e Disegno Industriale” of the University of Campania “Luigi Vanvitelli”, member of UNI committee on Acoustics and Vibration, who kindly made available the apparatus for the measurement of flow resistivity, is highly acknowledged. The valuable experimental support of Luciano Cortese, in charge of SEM laboratory of Istituto di Ricerche sulla Combustione of Consiglio Nazionale delle Ricerche of Naples, is highly acknowledged.


  1. 1.
    Barber, A., “Handbook of noise and vibration control”, Elsevier, Oxford, 1992Google Scholar
  2. 2.
    Crocker, M. J., “Handbook of Noise and Vibration Control”, John Wiley and Sons, New York, 2007CrossRefGoogle Scholar
  3. 3.
    Khan, W. S.; Asmalutu, R.; Yildirim, M. B. Acoustical properties of electrospun fibers for aircraft interior noise reduction. J. Aerosp. Eng. 2012, 25, 376–382.CrossRefGoogle Scholar
  4. 4.
    Ingard, U. Notes on sound absorption technology. 1994Google Scholar
  5. 5.
    Goines, L.; Hagler, L. Noise Pollution: A Modern Plague. South. Med. J. 2007, 100, 287–294.CrossRefGoogle Scholar
  6. 6.
    Mahashabde, A.; Wolfe, P.; Ashok, A.; Dorbia, C.; He, Q.; Fan, A.; Lukachko, S.; Mozdzanowska, A.; Wollersheim, C.; Barrett, S. R. H.; Locke, M.; Waits, I. A. Assessing the environmental impacts of aircraft noise and emissions. Prog. Aerosp. Sci. 2011, 47, 15–52.CrossRefGoogle Scholar
  7. 7.
    Zhao, D.; Li, X. Y. A review of acoustic dampers applied to combustion chambers in aerospace industry. Prog. Aerosp. Sci. 2015, 74, 114–30.CrossRefGoogle Scholar
  8. 8.
    Harris, C. M., “Handbook of Acoustical Measurements and Noise Control”, Mcgraw-Hill, 1997Google Scholar
  9. 9.
    Arenas, J. P.; Crocker, M. J. Recent trends in porous soundabsorbing materials. J. Sound Vib. 2010, 12–17.Google Scholar
  10. 10.
    Liu, H.; Wang, D.; Zhao, N.; Ma, J.; Gong, J.; Yang, S.; Xu, J. Application of electrospinning fibres on sound absorption in low and medium frequency range. Mater. Res. Innov. 2014, 18, 888–891.Google Scholar
  11. 11.
    Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253.CrossRefGoogle Scholar
  12. 12.
    Teo, W. E.; Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006, 17, 89–106.CrossRefGoogle Scholar
  13. 13.
    Rutledge, G. C.; Fridrikh, S. V. Formation of fibers by electrospinning. Adv. Drug Deliv. Rev. 2007, 59, 1384–1391.CrossRefGoogle Scholar
  14. 14.
    Bhardwaj, N.; Kundu, S. C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347.CrossRefGoogle Scholar
  15. 15.
    Lanotte, L.; Bilotti, C.; Sabetta, L.; Tomaiuolo, G.; Guido, S. Dispersion of sepiolite rods in nano fibers by electrospinning. Polymer 2013, 54(4), 1295–1297.CrossRefGoogle Scholar
  16. 16.
    Agarwal, S.; Greiner, A.; Wendorff, J. H. Functional materials by electrospinning of polymers. Prog. Polym. Sci. 2013, 38, 963–991.CrossRefGoogle Scholar
  17. 17.
    Xiang, H.; Tan, S.; Yu, X.; Long, Y.; Zhang, X.; Zhao, N.; Xu, J. Sound absorption behavior of electrospun polyacrylonitrile nanofibrous membranes. Chinese J. Polym. Sci. 2011, 29(6), 650–657.CrossRefGoogle Scholar
  18. 18.
    Trematerra, A.; Iannace, G.; Nesti, S.; Fatarella, E.; Peruzzi, F. Acoustic properties of nanofibers. Noise & Vibration Worldwide 2014, 45, 29–33.CrossRefGoogle Scholar
  19. 19.
    Iannace, G. Sound absorption of materials obtained from the shredding of worn tyres. Building acoustics 2014, 21(4), 277–286.CrossRefGoogle Scholar
  20. 20.
    Chung, J. Y.; Blaser, D. A. Transfer function method of measuring in-duct acoustic properties. I. Theory. J. Acoust. Soc. Am. 1980, 68, 907–13.CrossRefGoogle Scholar
  21. 21.
    Koruk, H. An assessment of the performance of impedance tube method. Noise Contr. Eng. J. 2014, 62, 264–274.CrossRefGoogle Scholar
  22. 22.
    Shenoy, S. L.; Bates, W. D.; Frisch, H. L.; Wrek, G. E. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymerpolymer interaction limit. Polymer 2005, 46, 3372–3384.CrossRefGoogle Scholar
  23. 23.
    Tarnow, V. Measured anisotropic air flow resistivity and sound attenuation of glass wool. J. Acoust. Soc. Am. 2002, 111(6), 2735–2739.CrossRefGoogle Scholar
  24. 24.
    Stani, M. M.; Muellner, H.; Plotizin, I. Sound insulation of plasterboard walls and air flow resistivity: an empirical examination with respect to practical applications. Proceedings of forum acusticum 2005 Budapest, 1987–1992Google Scholar
  25. 25.
    Blevins, R. D. Formulas for natural frequency and mode shape. Krieger Pub Co, ISBN-13: 978–1575241845, ISBN-10: 1575241846, 2001Google Scholar
  26. 26.
    Zhu, X. Z.; Chen, Z. B.; Jiao, Y. H.; Wang, Y. P. Broadening of the sound absorption bandwidth of the perforated panel using a membrane-type resonator. ASME J. Vib. Acoust. 2018, 140(3), 031014.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited (

Authors and Affiliations

  • Joshua Avossa
    • 1
  • Francesco Branda
    • 1
    Email author
  • Francesco Marulo
    • 2
  • Giuseppe Petrone
    • 2
  • Stefano Guido
    • 1
  • Giovanna Tomaiuolo
    • 1
  • Aniello Costantini
    • 1
  1. 1.Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMaPI)Università degli Studi di Napoli Federico IINapoliItaly
  2. 2.Dipartimento di Ingegneria Industriale (DII)Università degli Studi di Napoli Federico IINapoliItaly

Personalised recommendations