Chinese Journal of Polymer Science

, Volume 37, Issue 1, pp 11–17 | Cite as

A Comparison Study of Physicochemical Properties and Stabilities of H-Shaped Molecule and the Corresponding Polymer

  • Quan-You Feng
  • Bin Li
  • Zong-Yan Zuo
  • Song-Lin Xie
  • Meng-Na Yu
  • Bin Liu
  • Ying Wei
  • Ling-Hai XieEmail author
  • Rui-Dong Xia
  • Wei Huang


Rare attention has been paid to the comparison between a monomer and its corresponding polymer in terms of the optoelectronic characteristics. In this article, a model H-shaped molecule and its corresponding polymer, both of which exhibited similar properties including blue emission and solution processing, were designed and synthesized. Optoelectronic properties and various kinds of stability features, including the thermostabilities, spectral stabilities and amplified spontaneous emission characteristic of the monomer and polymer were investigated. In general, the corresponding polymer PH exhibited similar optoelectronic properties but deteriorated stabilities compared with its H-shaped monomer H-1 probably owing to the similar chemical structure but the wider molecular weight distribution and metal catalyst residue. Importantly, monomer H-1 displayed a comparable ASE threshold value with its polymer PH, suggesting that H-shaped fluorene-based small molecules may be more promising optical gain media in solid state amplifers and lasers.


Fluorene H-shape Stability Optoelectronic materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 21504047, 21774061), the Six Peak Talents Foundation of Jiangsu Province (No. XCL-CXTD- 009), Natural Science Foundation of Jiangsu Province (No. BK20150834), and Synergetic Innovation Center for Organic Electronics and Information Displays.

Supplementary material

10118_2018_2152_MOESM1_ESM.pdf (1.3 mb)
A Comparison Study of Physicochemical Properties and Stabilities of H-Shaped Molecule and the Corresponding Polymer


  1. 1.
    Xie, L. H.; Yin, C. R.; Lai, W. Y.; Fan, Q. L.; Huang, W. Polyfluorene-based semiconductors combined with various periodic table elements for organic electronics. Prog. Polym. Sci. 2012, 37(9), 1192–1264CrossRefGoogle Scholar
  2. 2.
    Cao, Y.; Zhang, J.; Bai, Y.; Li, R.; Zakeeruddin, S. M.; Grätzel, M.; Wang, P. Dye-sensitized solar cells with solvent-free ionic liquid electrolytes. J. Phys. Chem. C 2008, 112(35), 13775–13781CrossRefGoogle Scholar
  3. 3.
    Feldblyum, J. I.; Mccreery, C. H.; Andrews, S. C.; Kurosawa, T.; Santos, E. J.; Duong, V.; Fang, L.; Ayzner, A. L.; Bao, Z. Few-layer, large-area, 2D covalent organic framework semiconductor thin films. Chem. Commun. 2015, 51(73), 13894–13897CrossRefGoogle Scholar
  4. 4.
    White, M. S.; Kaltenbrunner, M.; Glowacki, E. D.; Gutnichenko, K.; Kettlgruber, G.; Graz, I.; Aazou, S.; Ulbricht, C.; Egbe, D. A. M.; Miron, M. C.; Major, Z.; Scharber, M. C.; Sekitani, T.; Someya, T.; Bauer, S.; Sariciftci, N. S. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photon. 2013, 7(10), 811–816CrossRefGoogle Scholar
  5. 5.
    Sun, M. L.; Zhong, C. M.; Li, F.; Pei, Q. B. Purified polar polyfluorene for light-emitting diodes and light-emitting electrochemical cells. Chinese J. Polym. Sci. 2012, 30(4), 503–510CrossRefGoogle Scholar
  6. 6.
    Grimsdale, A. C.; Chan, K. L.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev. 2009, 109(3), 897–1091CrossRefGoogle Scholar
  7. 7.
    Prasad, L. G. Azo dye doped polymer films for nonlinear optical applications. Chinese J. Polym. Sci. 2014, 32(5), 650–657CrossRefGoogle Scholar
  8. 8.
    Ford, E. B.; Lystad, V.; Rasio, F. A. Planet-planet scattering in the upsilon Andromedae system. Nature 2005, 434(7035), 873–876CrossRefGoogle Scholar
  9. 9.
    Wei, Q.; Li, Y.; Liu, J. G.; Fang, Q. Y.; Li, J. W.; Yan, X. H.; Xie, L. H.; Qian, Y.; Xia, R. D.; Huang, W. A High performance deep blue organic laser gain material. Adv. Opt. Mater. 2017, 5(8), 1601003CrossRefGoogle Scholar
  10. 10.
    Samuel, I. D. W.; Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 2007, 107(4), 1272–1295CrossRefGoogle Scholar
  11. 11.
    Islam, A.; Liu, Z. Y.; Peng, R. X.; Jiang, W. G.; Lei, T.; Li, W.; Zhang, L.; Yang, R. J.; Guan, Q.; Ge, Z. Y. Furan-containing conjugated polymers for organic solar cells. Chinese J. Polym. Sci. 2017, 35(2), 171–183CrossRefGoogle Scholar
  12. 12.
    Brabec, C. J.; Gowrisanker, S.; Halls, J. J.; Laird, D.; Jia, S.; Williams, S. P. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 2010, 22(34), 3839–3856CrossRefGoogle Scholar
  13. 13.
    Guenes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107(4), 1324–1338CrossRefGoogle Scholar
  14. 14.
    Sirringhaus, H. Device physics of solution-processed organic field-effect transistors. Adv. Mater. 2005, 17(20), 2411–2425CrossRefGoogle Scholar
  15. 15.
    Hamadani, B. H.; Natelson, D. Temperature-dependent contact resistances in high-quality polymer field-effect transistors. Appl. Phys. Lett. 2004, 84(3), 443–445CrossRefGoogle Scholar
  16. 16.
    Yap, B. K.; Xia, R. D.; Campoy-Quiles, M.; Stavrinou, P. N.; Bradley, D. D. Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. Nat. Mater. 2008, 7(5), 376–380CrossRefGoogle Scholar
  17. 17.
    Yu, M. N.; Ou, C. J.; Liu, B.; Lin, D. Q.; Liu, Y. Y.; Xue, W.; Lin, Z. Q.; Lin, J. Y.; Qian, Y.; Wang, S. S.; Cao, H. T.; Bian, L. Y.; Xie, L. H.; Huang, W. Progress in fluorene-based widebandgap steric semiconductors. Chinese J. Polym. Sci. 2017, 35(2), 155–170CrossRefGoogle Scholar
  18. 18.
    Rabe, T.; Hoping, M.; Schneider, D.; Becker, E.; Johannes, H. H.; Kowalsky, W.; Weimann, T.; Wang, J.; Hinze, P.; Nehls, B. S.; Scherf, U.; Farrell, T.; Riedl, T. Threshold reduction in polymer lasers based on poly(9,9-dioctylfluorene) with statistical binaphthyl units. Adv. Funct. Mater. 2005, 15(7), 1188–1192CrossRefGoogle Scholar
  19. 19.
    Kuehne, A. J. C.; Kaiser, M.; Mackintosh, A. R.; Wallikewitz, B. H.; Hertel, D.; Pethrick, R. A.; Meerholz, K. Submicrometer patterning of amorphous-and ft-phase in a crosslinkable poly(9,9-dioctylfluorene): dual-wavelength lasing from a mixed-morphology device. Adv. Funct. Mater. 2011, 21(13), 2564–2570CrossRefGoogle Scholar
  20. 20.
    Grell, M.; Bradley, D. D. C.; Long, X.; Chamberlain, T.; Inbasekaran, M.; Woo, E. P.; Soliman, M. Chain geometry, solution aggregation and enhanced dichroism in the liquidcrystalline conjugated polymer poly(9,9-dioctylfluorene). Acta Polym. 1998, 49(8), 439–444CrossRefGoogle Scholar
  21. 21.
    Kuehne, A. J. C.; Mackintosh, A. R.; Pethrick, R. A. ft-Phase formation in a crosslinkable poly(9,9-dihexylfluorene). Polymer 2011, 52(24), 5538–5542CrossRefGoogle Scholar
  22. 22.
    Lin, J. Y.; Zhu, W. S.; Liu, F.; Xie, L. H.; Zhang, L.; Xia, R. D.; Xing, G. C.; Huang, W. A Rational molecular design of ftphase polydiarylfluorenes: synthesis, morphology, and organic lasers. Macromolecules 2014, 47(3), 1001–1007CrossRefGoogle Scholar
  23. 23.
    Liu, B.; Lin, J. Y.; Liu, F.; Yu, M. N.; Zhang, X. W.; Xia, R. D.; Yang, T.; Fang, Y. T.; Xie, L. H.; Huang, W. A Highly Crystalline and wide-bandgap polydiarylfluorene with betaphase conformation toward stable electroluminescence and dual amplified spontaneous emission. ACS Appl. Mater. Interfaces 2016, 8(33), 21648–21655CrossRefGoogle Scholar
  24. 24.
    Grell, M.; Bradley, D. D. C.; Ungar, G.; Hill, J.; Whitehead, K. S. Interplay of physical structure and photophysics for a liquid crystalline polyfluorene. Macromolecules 1999, 32(18), 5810–5817CrossRefGoogle Scholar
  25. 25.
    Knaapila, M.; Torkkeli, M.; Galbrecht, F.; Scherf, U. Crystalline and noncrystalline forms of poly(9,9-diheptylfluorene). Macromolecules 2013, 46(3), 836–843CrossRefGoogle Scholar
  26. 26.
    Chen, S. H.; Su, A. C.; Su, C. H.; Chen, S. A. Crystalline forms and emission behavior of poly(9,9-di-n-octyl-2,7-fluorene). Macromolecules 2005, 38(2), 379–385CrossRefGoogle Scholar
  27. 27.
    Tang, R. P.; Tan, Z. A.; Li, Y. F.; Xi, F. Synthesis of new conjugated polyfluorene derivatives bearing triphenylamine moiety through a vinylene bridge and their stable blue electroluminescence. Chem. Mater. 2006, 18(4), 1053–1061CrossRefGoogle Scholar
  28. 28.
    Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Mullen, K.; Meghdadi, F.; List, E. J. W.; Leising, G. Polyfluorenes with polyphenylene dendron side chains: Toward non-aggregating, light-emitting polymers. J. Am. Chem. Soc. 2001, 123(5), 946–953CrossRefGoogle Scholar
  29. 29.
    Lee, J.; Cho, H. J.; Jung, B. J.; Cho, N. S.; Shim, H. K. Stabilized blue luminescent polyfluorenes: Introducing polyhedral oligomeric silsesquioxane. Macromolecules 2004, 37(23), 8523–8529CrossRefGoogle Scholar
  30. 30.
    Jiang, Z.; Liu, Z.; Yang, C.; Zhong, C.; Qin, J.; Yu, G.; Liu, Y. Multifunctional fluorene-based oligomers with novel spiroannulated triarylamine: efficient, stable deep-blue electroluminescence, good hole injection, and transporting materials with very high Tg. Adv. Funct. Mater. 2009, 19(24), 3987–3995CrossRefGoogle Scholar
  31. 31.
    Wu, Y. G.; Li, J.; Fu, Y. Q.; Bo, Z. S. Synthesis of extremely stable blue light emitting poly(spirobifluorene)s with suzuki polycondensation. Org. Lett. 2004, 6(20), 3485–3487CrossRefGoogle Scholar
  32. 32.
    Kanibolotsky, A. L.; Berridge, R.; Skabara, P. J.; Perepichka, I. F.; Bradley, D. D. C.; Koeberg, M. Synthesis and properties of monodisperse oligofluorene-functionalized truxenes: Highly fluorescent star-shaped architectures. J. Am. Chem. Soc. 2004, 126(42), 13695–13702CrossRefGoogle Scholar
  33. 33.
    Zhou, X. H.; Yan, J. C.; Pei, J. Synthesis and relationships between the structures and properties of monodisperse starshaped oligofluorenes. Org. Lett. 2003, 5(19), 3543–3546CrossRefGoogle Scholar
  34. 34.
    Liu, X. M.; Xu, J. W.; Lu, X. H.; He, C. B. Novel glassy tetra(N-alkyl-3-bromocarbazole-6-yl)silanes as building blocks for efficient and nonaggregating blue-light-emitting tetrahedral materials. Org. Lett. 2005, 7(14), 2829–2832CrossRefGoogle Scholar
  35. 35.
    Chen, X. W.; Tseng, H. E.; Liao, J. L.; Chen, S. A. Green emission from end-group-enhanced aggregation in polydioetylfluorene. J. Phys. Chem. B 2005, 109(37), 17496–17502CrossRefGoogle Scholar
  36. 36.
    Qian, Y.; Wei, Q.; Del Pozo, G.; Mroz, M. M.; Luer, L.; Casado, S.; Cabanillas-Gonzalez, J.; Zhang, Q.; Xie, L.; Xia, R.; Huang, W. H-shaped oligofluorenes for highly air-stable and low-threshold non-doped deep blue lasing. Adv. Mater. 2014, 26(18), 2937–2942CrossRefGoogle Scholar
  37. 37.
    Xie, L. H.; Hou, X. Y.; Tang, C.; Hua, Y. R.; Wang, R. J.; Chen, R. F.; Fan, Q. L.; Wang, L. H.; Wei, W.; Peng, B.; Huang, W. Novel H-shaped persistent architecture based on a dispiro building block system. Org. Lett. 2006, 8(7), 1363–1366CrossRefGoogle Scholar
  38. 38.
    Zhao, L.; Wang, S. M.; Shao, S. Y.; Ding, J. Q.; Wang, L. X.; Jing, X. B.; Wang, F. S. Stable and efficient deep-blue terfluorenes functionalized with carbazole dendrons for solution-processed organic light-emitting diodes. J. Mater. Chem. C 2015, 3(34), 8895–8903CrossRefGoogle Scholar
  39. 39.
    Li, M.; Tang, S.; Shen, F. Z.; Liu, M. R.; Xie, W. J.; Xia, H.; Liu, L. L.; Tian, L. L.; Xie, Z. Q.; Lu, P.; Hanif, M.; Lu, D.; Cheng, G.; Ma, Y. G. Highly luminescent network films from electrochemical deposition of peripheral carbazole functionalized fluorene oligomer and their applications for light-emitting diodes. Chem. Commun. 2006, 3393–3395Google Scholar
  40. 40.
    Ou, C. J.; Ding, X. H.; Li, Y. X.; Zhu, C.; Yu, M. N.; Xie, L. H.; Lin, J. Y.; Xu, C. X.; Huang, W. Conformational effect of polymorphic terfluorene on photophysics, crystal morphologies, and lasing behaviors. J. Phys. Chem. C 2017, 121(27), 14803–14810CrossRefGoogle Scholar
  41. 41.
    Giovanella, U.; Botta, C.; Galeotti, F.; Vercelli, B.; Battiato, S.; Pasini, M. Perfluorinated polymer with unexpectedly efficient deep blue electroluminescence for full-colour OLED displays and light therapy applications. J. Mater. Chem. C 2013, 1(34), 5322–5329CrossRefGoogle Scholar
  42. 42.
    Yu, M. N.; Soleimaninejad, H.; Lin, J. Y.; Zuo, Z. Y.; Liu, B.; Bo, Y. F.; Bai, L. B.; Han, Y. M.; Smith, T. A.; Xu, M.; Wu, X. P.; Dunstan, D. E.; Xia, R. D.; Xie, L. H.; Bradley, D. D. C.; Huang, W. Photophysical and fluorescence anisotropic behavior of polyfluorene β-conformation films. J. Phys. Chem. Lett. 2018, 9(2), 364–372.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Quan-You Feng
    • 1
  • Bin Li
    • 1
  • Zong-Yan Zuo
    • 1
  • Song-Lin Xie
    • 1
  • Meng-Na Yu
    • 1
  • Bin Liu
    • 1
  • Ying Wei
    • 1
  • Ling-Hai Xie
    • 1
    Email author
  • Rui-Dong Xia
    • 1
  • Wei Huang
    • 1
    • 2
  1. 1.Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts & TelecommunicationsNanjingChina
  2. 2.Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi’anChina

Personalised recommendations