Chinese Journal of Polymer Science

, Volume 36, Issue 5, pp 555–562 | Cite as

Fluorescence Retention of Organosilane-polymerized Carbon Dots Inverse Opals in CuCl Suspension

Rapid Communication
  • 37 Downloads

Abstract

A novel and fluorescence retention inverse opal has been achieved from organosilane-polymerized carbon dots (SiCDs), which is prepared via infiltrating SiCD solution into the interstice of photonic crystal (PC) template, low temperature treatment, heating polymerization and removing the colloidal template. The as-prepared SiCD inverse opals demonstrate close-cell structure, which is completely different from conventional open-cell structure. Then the fluorescence signal of as-prepared sample keeps almost unchanged in CuCl suspension while the fluorescence of SiCD solution can be quenched by CuCl suspension through an effective electron transfer process. This phenomenon can be attributed to the combined effect of high hydrostatic pressure in the pore structure, stable crosslinking network and fluorescence enhancement by PC structure. The SiCD inverse opals have advantages of unique close-cell structure, easy preparation and good repeatability that give an important insight into the design and manufacture of novel and advanced optical devices.

Keywords

Carbon dots Inverse opals Close-cell structure Fluorescence retention Inorganic salt solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the Ministry of Science and Technology of China (Nos. 2016YFA0200803 and 2016YFB0402004), and the National Natural Science Foundation of China (Nos. 51673207 and 51373183).

Supplementary material

10118_2018_2126_MOESM1_ESM.pdf (1.9 mb)
Fluorescence Retention of Organosilane-polymerized Carbon Dots Inverse Opals in CuCl Suspension

References

  1. 1.
    Lu, S. Y.; Sui, L. Z.; Liu, J. J.; Zhu, S. J.; Chen, A. M.; Jin, M. X.; Yang, B. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv. Mater. 2017, 29, 1603443.CrossRefGoogle Scholar
  2. 2.
    Wang, L.; Wang, Y. L.; Xu, T.; Liao, H. B.; Yao, C. B.; Liu, Y.; Li, Z.; Chen, Z. W.; Pan, D. Y.; Sun, L. T.; Wu, M. H. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat. Commun. 2014, 5, 5357.CrossRefGoogle Scholar
  3. 3.
    Mahesh, S.; Lekshmi, C. L.; Renuka, K. D.; Joseph, K. Simple and cost-effective synthesis of fluorescent graphene quantum dots from honey: application as stable security ink and white-light emission. Part. Part. Syst. Charact. 2016, 33, 70–74.CrossRefGoogle Scholar
  4. 4.
    Zhang, F.; Feng, X. T.; Zhang, Y.; Yan, L. P.; Yang, Y. Z.; Liu, X. J. Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs. Nanoscale 2016, 8, 8612–8618.Google Scholar
  5. 5.
    Zhu, L. L.; Yin, Y. J.; Wang, C. F.; Chen, S. Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding. J. Mater. Chem. C 2013, 1, 4925–4932.CrossRefGoogle Scholar
  6. 6.
    Liu, S. S.; Wang, C. F.; Li, C. X.; Wang, J.; Mao, L. H.; Chen, S. Hair-derived carbon dots toward versatile multidimensional fluorescent materials. J. Mater. Chem. C 2014, 2, 6477–6483.CrossRefGoogle Scholar
  7. 7.
    Liu, S.; Tian, J. Q.; Wang, L.; Zhang, Y. W.; Qin, X. Y.; Luo, Y. L.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater. 2012, 24, 2037–2041.CrossRefGoogle Scholar
  8. 8.
    Xu, Y.; Chen, X.; Chai, R.; Xing, C. F.; Li, H. R.; Yin, X. B. A magnetic/fluorometric bimodal sensor based on a carbon dots-MnO2 platform for glutathione detection. Nanoscale 2016, 8, 13414–13421.CrossRefGoogle Scholar
  9. 9.
    Miao, X.; Qu, D.; Yang, D. X.; Nie, B.; Zhao, Y. K.; Fan, H. Y.; Sun, Z. C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018, 30, 1704740.CrossRefGoogle Scholar
  10. 10.
    Liu, J. J.; Lu, S. Y.; Tang, Q. L.; Zhang, K.; Yu, W. X.; Sun, H. C.; Yang, B. One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against porphyromonas gingivalis. Nanoscale 2017, 9, 7135–7142.CrossRefGoogle Scholar
  11. 11.
    Lu, S. Y.; Xiao, G. J.; Sui, L. Z.; Feng, T. L.; Yong, X.; Zhu, S. J.; Li, B. J.; Liu, Z. Y.; Zou, B.; Jin, M. X.; Tse, J. S.; Yan, H.; Yang, B. Piezochromic carbon dots with two-photon fluorescence. Angew. Chem. Int. Ed. 2017, 129, 6283–6287.CrossRefGoogle Scholar
  12. 12.
    Liu, X. J.; Liu, L. T.; Hu, X. J.; Zhou, S. Y.; Ankri, R.; Fixler, D.; Xie, Z. Multimodal bioimaging based on gold nanorod and carbon dot nanohybrids as a novel tool for atherosclerosis detection. Nano Res. 2017, DOI: 10.1007/s12274-017-1739-4Google Scholar
  13. 13.
    Xie, Z.; Wang, F.; Liu, C. Y. Organic-inorganic hybrid functional carbon dot gel glasses. Adv. Mater. 2012, 24, 1716–1721.CrossRefGoogle Scholar
  14. 14.
    Huang, J. J.; Zhong, Z. F.; Rong, M. Z.; Zhou, X.; Chen, X. D.; Zhang, M. Q. An easy approach of preparing strongly luminescent carbon dots and their polymer based composites for enhancing solar cell efficiency. Carbon 2014, 70,190–198.CrossRefGoogle Scholar
  15. 15.
    Lu, W. B.; Qin, X. Y.; Liu, S.; Chang, G. H.; Zhang, Y. W.; Luo, Y. L.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of Mercury(II) ions. Anal. Chem. 2012, 84(12), 5351–5357.CrossRefGoogle Scholar
  16. 16.
    Zheng, M.; Xie, Z. G.; Qu, D.; Li, D.; Du, P.; Jing, X. P.; Sun, Z. C. On-off-on fluorescent carbon dot nanosensor for recognition of Chromium(VI) and ascorbic acid based on the inner filter effect. ACS Appl. Mater. Interfaces 2013, 5, 1078–1083.CrossRefGoogle Scholar
  17. 17.
    Dong, Y. Q.; Wang, R. X.; Li, G. L.; Chen, C. Q.; Chi, Y. W.; Chen, G. N. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal. Chem. 2012, 84, 6620–6624.Google Scholar
  18. 18.
    Lu, W. J.; Gong, X. J.; Nan, M.; Liu, Y.; Shuang, S. M.; Dong, C. Comparative study for N and S doped carbon dots: synthesis, characterization and applications for Fe3+ probe and cellular imaging. Anal. Chim. Acta 2015, 898, 116–127.CrossRefGoogle Scholar
  19. 19.
    Luo, W.; Yan, J. D.; Tan, Y. L.; Ma, H. R.; Guan, J. G. Rotating 1-D magnetic photonic crystal balls with a tunable lattice constant. Nanoscale 2017, 9, 9548–9555.CrossRefGoogle Scholar
  20. 20.
    Wu, Y. N.; Li, F. T.; Zhu, W.; Cui, J. C.; Tao, C. A.; Lin, C. X.; Hannam, P. M.; Li, G. T. Metal-organic frameworks with a three-dimensional ordered macroporous structure: dynamic photonic materials. Angew. Chem. Int. Ed. 2011, 50, 12518–12522.CrossRefGoogle Scholar
  21. 21.
    Liu, J. C.; Wan, L.; Zhang, M. B.; Jiang, K. J.; Song, K.; Wang, J. X.; Ikeda, T.; Jiang, L. Electrowetting-induced morphological evolution of metal-organic inverse opals toward a water-lithography approach. Adv. Funct. Mater. 2017, 27, 1605221.CrossRefGoogle Scholar
  22. 22.
    Chen, K.; Fu, Q. Q.; Ye, S. Y.; Ge, J. P. Multicolor printing using electric-field-responsive and photocurable photonic crystals. Adv. Funct. Mater. 2017, 27, 1702825.CrossRefGoogle Scholar
  23. 23.
    Pang, F.; Jiang, Y. T.; Zhang, Y. Q.; He, M. Y.; Ge, J. P. Synergetic enhancement of photocatalytic activity with a photonic crystal film as a catalyst support. J. Mater. Chem. A 2015, 3, 21439–21443.CrossRefGoogle Scholar
  24. 24.
    Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, D. H.; Sun-Waterhouse D.; Liorca, J.; Idriss, H. Hydrogen production by tuning the photonic band gap with the electronic band gap of TiO2. Sci. Rep. 2013, 3, 2849.CrossRefGoogle Scholar
  25. 25.
    Rahul, T. K.; Sandhyarani, N. Nitrogen-fluorine co-doped titania inverse opals for enhanced solar light driven photocatalysis. Nanoscale 2015, 7, 18259–18270.CrossRefGoogle Scholar
  26. 26.
    Wang, H.; Gu, H. C.; Chen, Z. Y.; Shang, L. R.; Zhao, Z.; Gu, Z. Z.; Zhao, Y. J. Enzymatic inverse opal hydrogel particles for biocatalyst. ACS Appl. Mater. Interfaces 2017, 9(15), 12914–12918.CrossRefGoogle Scholar
  27. 27.
    Gao, N.; Tian, T.; Cui, J. C.; Zhang, W. L.; Yin, X. P.; Wang, S. Q.; Ji, J. W.; Li, G. T. Efficient construction of well-defined multicompartment porous systems in a modular and chemically orthogonal fashion. Angew. Chem. Int. Ed. 2017, 56, 3880–3885.CrossRefGoogle Scholar
  28. 28.
    Zhao, Z.; Wang, H.; Shang, L. R.; Yu, Y. R.; Fu, F. F.; Zhao, Y. J.; Gu, Z. Z. Bioinspired heterogeneous structural color stripes from capillaries. Adv. Mater. 2017, 29, 1704569.CrossRefGoogle Scholar
  29. 29.
    Liu, J. C.; Xie, Z.; Shang, Y. Y.; Ren, J. K.; Hu, R. X.; Guan, B.; Wang, J. X.; Ikeda, T.; Jiang, L. Lyophilic but nonwettable organosilane-polymerized carbon dots inverse opals with close-cell structure. ACS Appl. Mater. Interfaces 2018, 10, 6701–6710.CrossRefGoogle Scholar
  30. 30.
    Fu, F. F.; Chen, Z. Y.; Zhao, Z.; Wang, H.; Shang, L. R.; Gu, Z. Z.; Zhao, Y. J. Bio-inspired self-healing structural color hydrogel. Proc. Natl. Acad. Sci. 2017, 114, 5900–5905.CrossRefGoogle Scholar
  31. 31.
    Guo, D.; Li, C.; Wang, Y.; Li, Y. N.; Song, Y. L. Precise assembly of particles for zigzag or linear patterns. Angew. Chem. Int. Ed. 2017, 129, 15550–15554.CrossRefGoogle Scholar
  32. 32.
    Hou, J.; Li, M. Z.; Song, Y. L. Patterned colloidal photonic crystals. Angew. Chem. Int. Ed. 2018, 57(10), 2544–2553.CrossRefGoogle Scholar
  33. 33.
    Xing, H. H.; Li, J.; Shi, Y.; Guo, J. B.; Wei, J. Thermally driven photonic actuator based on silica opal photonic crystal with liquid crystal elastomer. ACS Appl. Mater. Interfaces 2016, 8(14), 9440–9445.CrossRefGoogle Scholar
  34. 34.
    Wei, W. Y.; Shi, A. S.; Wu, T. H.; Wei, J.; Guo, J. B. Thermo-responsive shape and optical memories of photonic composite films enabled by glassy liquid crystalline polymer networks. Soft Matter 2016, 12, 8534–8541.CrossRefGoogle Scholar
  35. 35.
    Zhou, J. M.; Yang, J.; Gu, Z. D.; Zhang, G. F.; Wei, Y.; Yao, X.; Song, Y. L.; Jiang, L. Controllable fabrication of noniridescent microshaped photonic crystal assemblies by dynamic three-phase contact line behaviors on superhydrophobic substrates. ACS Appl. Mater. Interfaces 2015, 7(40), 22644–22651.CrossRefGoogle Scholar
  36. 36.
    Zhou, J. M.; Han, P.; Liu, M. J.; Zhou, H. Y.; Zhang, Y. X.; Jiang, J. K.; Liu, P.; Wei, Y.; Song, Y. L.; Yao, X. Self-healable organogel nanocomposite with angle-independent structural colors. Angew. Chem. Int. Ed. 2017, 129, 10598–10602.CrossRefGoogle Scholar
  37. 37.
    Liu, J. C.; Shang, Y. Y.; Zhang, D. J.; Xie, Z.; Hu, R. X.; Wang, J. X. Single-material solvent-sensitive fluorescent actuator from carbon dots inverse opals based on gradient dewetting. Chinese J. Polym. Sci. 2017, 35(9), 1043–1050.CrossRefGoogle Scholar
  38. 38.
    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059–2062.CrossRefGoogle Scholar
  39. 39.
    John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489.CrossRefGoogle Scholar
  40. 40.
    Sun, Y.; Zhang, Z. X.; Xie, A. J.; Xiao, C. H.; Li, S. K.; Huang, F. Z.; Shen, Y. H. An ordered and porous N-doped carbon dot-sensitized Bi2O3 inverse opal with enhanced photoelectrochemical performance and photocatalytic activity. Nanoscale 2015, 7, 13974–13980.CrossRefGoogle Scholar
  41. 41.
    Cheng, J.; Wang, C. F.; Zhang, Y.; Yang, S. Y.; Chen, S. Zinc ion-doped carbon dots with strong yellow photoluminescence. RSC Adv. 2016, 6, 37189–37194.CrossRefGoogle Scholar
  42. 42.
    Fan, Y. O.; Cheng, H. H.; Zhou, C.; Xie, X. J.; Liu, Y.; Dai, L. M.; Zhang, J.; Qu, L. T. Honeycomb architecture of carbon quantum dots: a new efficient substrate to support gold for stronger SERS. Nanoscale 2012, 4, 1776–1781.CrossRefGoogle Scholar
  43. 43.
    Eftekhari, E.; Wang, W. T.; Li, X.; Nikhil, A.; Wu, Z. Q.; Klein, R.; Cole, I. S.; Li, Q. Picomolar reversible Hg(II) solid-state sensor based on carbon dots in double heterostructure colloidal photonic crystals. Sensor Actuat. B-Chem. 2017, 240, 204–211.CrossRefGoogle Scholar
  44. 44.
    Zhang, W. J.; Zhang, X. Z.; Zhang, Z. X.; Wang, W. H.; Xie, A. J.; Xiao, C. H.; Zhang, H.; Shen, Y. H. A nitrogen-doped carbon dot-sensitized TiO2 inverse opal film: preparation, enhanced photoelectrochemical and photocatalytic performance. J. Electrochem. Soc. 2015, 162, H638–H644.CrossRefGoogle Scholar
  45. 45.
    Wang, F.; Xie, Z.; Zhang, H.; Liu, C. Y.; Zhang, Y. G. Highly luminescent organosilane-functionalized carbon dots. Adv. Funct. Mater. 2011, 21, 1027–1031.CrossRefGoogle Scholar
  46. 46.
    Liu, R. H.; Li, H. T.; Kong, W. Q.; Liu, J.; Liu, Y.; Tong, C. Y.; Zhang, X.; Kang, Z. H. Ultra-sensitive and selective Hg2+ detection based on fluorescent carbon dots. Mater. Res. Bull. 2013, 48, 2529–2534.CrossRefGoogle Scholar
  47. 47.
    Xia, Y. S.; Zhu, C. Q. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II). Talanta. 2008, 75, 215–221.Google Scholar
  48. 48.
    Blanford, C. F.; Schroden, R. C.; Al-Daous, M.; Stein, A. Tuning solvent-dependent color changes of three-dimensionally ordered macroporous (3DOM) materials through compositional and geometric modifications. Adv. Mater. 2001, 13, 26–29.CrossRefGoogle Scholar
  49. 49.
    Li, H. L.; Wang, J. X.; Yang, L. M.; Song, Y. L. Superoleophilic and superhydrophobic inverse opals for oil sensors. Adv. Funct. Mater. 2008, 18, 3258–3264.CrossRefGoogle Scholar
  50. 50.
    Tian, D. L.; Chen, Q. W.; Nie, F. Q.; Xu, J. I.; Song, Y. L.; Jiang, L. Patterned wettability transition by photoelectric cooperative and anisotropic wetting for liquid reprography. Adv. Mater. 2009, 21, 3744–3749.CrossRefGoogle Scholar
  51. 51.
    Heng, L. P.; Li, J.; Li, M. C.; Tian, D. L.; Fan, L. Z.; Jiang, L.; Tang, B. Z. Ordered honeycomb structure surface generated by breath figures for liquid reprography. Adv. Funct. Mater. 2014, 24, 7241–7248.CrossRefGoogle Scholar
  52. 52.
    Li, H.; Wang, J. X.; Pan, Z. L.; Cui, L. Y.; Xu, L.; Wang, R. M.; Song, Y. L.; Jiang, L. Amplifying fluorescence sensing based on inverse opal photonic crystal toward trace TNT detection. J. Mater. Chem. 2011, 21, 1730–1735.CrossRefGoogle Scholar
  53. 53.
    Chen, J. I. L.; Freymann, G. V.; Choi, S. Y.; Kitaev, V.; Ozin, G. A. Amplified photochemistry with slow photons. Adv. Mater. 2006, 18, 1915–1919.CrossRefGoogle Scholar
  54. 54.
    Liu, J. C.; Ren, J. K.; Xie, Z.; Guan, B.; Wang, J. X.; Ikeda, T.; Jiang, L. Multi-functional organosilane-polymerized carbon dots inverse opals. Nanoscale 2018, DOI: 10.1039/C7NR09387JGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Polymer Science and Engineering, College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouChina
  2. 2.Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technique Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  4. 4.Laboratory of Bioinspired materials, School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations