Chinese Journal of Polymer Science

, Volume 36, Issue 9, pp 1047–1054 | Cite as

Structures and Surface States of Polymer Brushes in Good Solvents: Effects of Surface Interactions

  • Yi-Xin Liu
  • Hong-Dong Zhang


The influence of the surface interaction on the mesoscopic structure of grafted polymers in good solvents has been examined. At high surface coverage, tethered polymers are in the brush state and the parabolic segment density profile is confirmed by self-consistent field theory (SCFT) calculations. It is found that this is a universal behavior for a whole range of surface interactions from complete repulsion to strong attraction. More interestingly, finite surface repulsion may lead to the maximum in the proximal layer of its segment density profile, which is significantly different from both the depletion layer of pure repulsion and the adsorbing layer of attraction. In addition to the brush state on both repulsive and attractive surfaces, three additional surface states were identified by analyzing the scaling behavior of the layer thickness of polymer brushes: the mushroom state on repulsive substrates, the dilute and the semidilute surface states on attractive substrates.


Self-consistent field theory Scaling theory Polymer thin film Polymer brush 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 21004013).


  1. 1.
    Chen, W. L.; Cordero, R.; Tran, H.; Ober, C. K. 50th Anniversary perspective: polymer brushes: novel surfaces for future materials. Macromolecules, 2017, 50(11), 4089–4113.CrossRefGoogle Scholar
  2. 2.
    Binder, K.; Milchev, A. Polymer brushes on flat and curved surfaces: how computer simulations can help to test theories and to interpret experiments. J. Polym. Sci., Part B: Polym. Phys., 2012, 50(22), 1515–1555.CrossRefGoogle Scholar
  3. 3.
    Azzaroni, O. Polymer brushes here, there, and everywhere: Recent advances in their practical applications and emerging opportunities in multiple research fields. J. Polym. Sci., Part A: Polym. Chem., 2012, 50(16), 3225–3258.CrossRefGoogle Scholar
  4. 4.
    Cohen Stuart, M. A.; Huck, W. T. S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Emerging applications of stimuli-responsive polymer materials. Nat. Mater., 2010, 9(2), 101–113.CrossRefGoogle Scholar
  5. 5.
    Ayres, N. Polymer brushes: applications in biomaterials and nanotechnology. Polym. Chem., 2010, 1(6), 769–777.CrossRefGoogle Scholar
  6. 6.
    Brittain, W. J.; Minko, S. A structural definition of polymer brushes. J. Polym. Sci., Part A: Polym. Chem., 2007, 45(16), 3505–3512.CrossRefGoogle Scholar
  7. 7.
    Currie, E. P. K.; Norde, W.; Cohen Stuart, M. A. Tethered polymer chains: surface chemistry and their impact on colloidal and surface properties. Adv. Colloid Interface Sci. 2003, 100–102, 205–265.CrossRefPubMedGoogle Scholar
  8. 8.
    Granick, S. Macromolecules at surfaces? research challenges and opportunities from tribology to biology J. Polym. Sci., Part B: Polym. Phys., 2003, 41(22), 2755–2793.CrossRefGoogle Scholar
  9. 9.
    Halperin, A.; Tirrell, M.; Lodge, T. Tethered chains in polymer microstructures. Adv. Polym. Sci. 1992, 100, 31–71.CrossRefGoogle Scholar
  10. 10.
    Alexander, S. Adsorption of chain molecules with a polar head a scaling description. J. Phys., 1977, 38(8), 983–987.CrossRefGoogle Scholar
  11. 11.
    de Gennes, P. G. Conformations of polymers attached to an interface. Macromolecules, 1980, 1075(19), 1069–1075.CrossRefGoogle Scholar
  12. 12.
    Milner, S. T.; Witten, T.; Cates, M. Theory of the grafted polymer brush. Macromolecules, 1988, 21(10), 2610–2619.CrossRefGoogle Scholar
  13. 13.
    Milner, S. T. Polymer brushes. Science, 1991, 251, 905–914.CrossRefPubMedGoogle Scholar
  14. 14.
    Netz, R. R.; Schick, M. Polymer brushes: from self-consistent field theory to classical theory. Macromolecules, 1998, 31(15), 5105–5122.CrossRefPubMedGoogle Scholar
  15. 15.
    Wijmans, C. M.; Scheutjens, J. M. H. M.; Zhulina, E. B. Selfconsistent field theories for polymer brushes: lattice calculations and an asymptotic analytical description. Macromolecules, 1992, 25(10), 2657–2665.CrossRefGoogle Scholar
  16. 16.
    Matsen, M. W.; Griffiths, G. H. Melt brushes of diblock copolymer. Eur. Phys. J. E, 2009, 29(2), 219–227.CrossRefPubMedGoogle Scholar
  17. 17.
    de Gennes, P. G., "Scaling concepts in polymer physics", Cornell University Press, Ithaca, 1979.Google Scholar
  18. 18.
    Eisenriegler, E.; Kremer, K.; Binder, K. Adsorption of polymer chains at surfaces: scaling and Monte Carlo analyses. J. Chem. Phys., 1982, 77(12), 6296–6320.CrossRefGoogle Scholar
  19. 19.
    Eisenriegler, E. Dilute and semidilute polymer solutions near an adsorbing wall. J. Chem. Phys., 1983, 79(2), 1052–1064.CrossRefGoogle Scholar
  20. 20.
    Bouchaud, E.; Daoud, M. Polymer adsorption: concentration effects. J. Phys., 1987, 48(11), 1991–2000.CrossRefGoogle Scholar
  21. 21.
    Descas, R.; Sommer, J. U.; Blumen, A. Grafted polymer chains interacting with substrates: computer simulations and scaling. macromol. Theory Simul., 2008, 17(9), 429–453.CrossRefGoogle Scholar
  22. 22.
    Adamuti-Trache, M.; McMullen, W. E.; Douglas, J. F. Segmental concentration profiles of end-tethered polymers with excluded-volume and surface interactions. J. Chem. Phys., 1996, 105(11), 4798–4811.CrossRefGoogle Scholar
  23. 23.
    Marko, J. F.; Johner, A.; Marques, C. M. Grafted polymers under the influence of external fields. J. Chem. Phys., 1993, 99(10), 8142–8153.CrossRefGoogle Scholar
  24. 24.
    Bijsterbosch, H. D.; de Haan, V. O.; de Graaf, A. W.; Mellema, M.; Leermakers, F. A. M.; Cohen Stuart, M. A.; van Well, A. A. Tethered adsorbing chains: neutron reflectivity and surface pressure of spread diblock copolymer monolayers. Langmuir, 1995, 29(14), 4467–4473.CrossRefGoogle Scholar
  25. 25.
    Fredrickson, G.H., "The equilibrium theory of inhomogeneous polymers", Clarendon Press, Oxford, 2006.Google Scholar
  26. 26.
    Chantawansri, T. L.; Hur, S. M.; García-Cervera, C. J.; Ceniceros, H. D.; Fredrickson, G. H. Spectral collocation methods for polymer brushes. J. Chem. Phys., 2011, 134(24), 244905.CrossRefPubMedGoogle Scholar
  27. 27.
    Liu, Y. X.; Zhang, H. D. Exponential time differencing methods with Chebyshev collocation for polymers confined by interacting surfaces. J. Chem. Phys. 2014, 140(22), 224101.CrossRefPubMedGoogle Scholar
  28. 28.
    Rasmussen, K. Ø.; Kalosakas, G. Improved numerical algorithm for exploring block copolymer mesophases.. J. Polym. Sci., Part B: Polym. Phys., 2002, 40(16), 1777–1783.CrossRefGoogle Scholar
  29. 29.
    Tzeremes, G.; Rasmussen, K. Ø.; Lookman, T.; Saxena, A. Efficient computation of the structural phase behavior of block copolymers. Phys. Rev. E., 2002, 65(4), 041806.CrossRefGoogle Scholar
  30. 30.
    Müller, M. Phase diagram of a mixed polymer brush. Phys. Rev. E, 2002, 65(3), 30802.CrossRefGoogle Scholar
  31. 31.
    Suo, T.; Whitmore, M. D. Self-consistent field theory of tethered polymers: One dimensional, three dimensional, strong stretching theories and the effects of excluded-volume-only interactions. J. Chem. Phys., 2014, 141(20), 204903.CrossRefPubMedGoogle Scholar
  32. 32.
    Meng, D.; Wang, Q. Solvent response of diblock copolymer brushes. J. Chem. Phys., 2009, 130(13), 134904.CrossRefPubMedGoogle Scholar
  33. 33.
    Trefethen, L. N., "Spectral methods in MATLAB", SIAM, Philadelphia, 2000.CrossRefGoogle Scholar
  34. 34.
    Douglas, J. F.; Nemirovsky, A. M.; Freed, K. F. Polymerpolymer and polymer-surface excluded volume effects in flexible polymers attached to an interface: comparison of renormalization group calculations with Monte Carlo and direct enumeration data. Macromolecules, 1986, 19(7), 2041–2054.CrossRefGoogle Scholar
  35. 35.
    Wu, D. T.; Fredrickson, G. H.; Carton, J. P. Surface segregation in conformationally asymmetric polymer blends: Incompressibility and boundary conditions. J. Chem. Phys., 1996, 104(16), 6387–6397.CrossRefGoogle Scholar
  36. 36.
    Hur, S. M.; Garca-Cervera, C. J.; Fredrickson, G. H. Chebyshev collocation in polymer field theory: application to wetting phenomena. Macromolecules, 2012, 45(6), 2905–2919.CrossRefGoogle Scholar
  37. 37.
    Laradji, M.; Guo, H.; Zuckermann, M. Off-lattice Monte Carlo simulation of polymer brushes in good solvents. Phys. Rev. E, 1994, 49(4), 3199–3206.CrossRefGoogle Scholar
  38. 38.
    de Gennes, P. G.; Pincus, P. Scaling theory of polymer adsorption: proximal exponent. J. Phys. Lett., 1983, 44(7), 241–246.CrossRefGoogle Scholar
  39. 39.
    Chakrabarti, A.; Nelson, P.; Toral, R. Structure of polymer chains end-grafted on an interacting surface. Phys. Rev. A, 1992, 46(8), 4930–4934.CrossRefPubMedGoogle Scholar
  40. 40.
    Grest, G. S. Grafted polymer brushes: a constant surface pressure molecular dynamics simulation. Macromolecules, 1994, 27(2), 418–426.CrossRefGoogle Scholar
  41. 41.
    Flatt, R. J.; Schober, I.; Raphael, E.; Plassard, C.; Lesniewska, E. Conformation of adsorbed comb copolymer dispersants. Langmuir, 2009, 25(2), 845–855.CrossRefPubMedGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular ScienceFudan UniversityShanghaiChina

Personalised recommendations