Skip to main content
Log in

Preparation of Porous Polylactide Microspheres and Their Application in Tissue Engineering

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this study, porous polylactide (PLA) microspheres with different structures were prepared through the multiple emulsion solvent evaporation method. By changing organic solvents (ethyl acetate and chloroform) and adding effervescent salt NH4HCO3 in the inner water phase, microspheres with porous capsular, matrix, microcapsular and multivesicular structures were prepared. The protein encapsulation and release, and the cell growth behavior of porous microspheres were further explored. Under the same inner water phase, microspheres prepared with chloroform had higher protein encapsulation efficiency and less protein release rate as compared with those prepared with ethyl acetate. Cell experiments showed that the relatively rough surface of microspheres prepared with chloroform was more favorable for the cell growth in comparison with the smooth surface of microspheres prepared with ethyl acetate. This study shows a simple and effective method to control the protein release and cell growth behaviors of polymer microspheres by tuning their porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Couvreur, P.; BlancoPrieto, M. J.; Puisieux, F.; Roques, B.; Fattal, E. Multiple emulsion technology for the design of microspheres containing peptides and oligopeptides. Adv. Drug Deliv. Rev. 1997, 28(1), 85–96.

    Article  CAS  PubMed  Google Scholar 

  2. McGlohorn, J. B.; Grimes, L. W.; Webster, S. S.; Burg, K. J. L. Characterization of cellular carriers for use in injectable tissue-engineering composites. J. Biomed. Mater. Res. Part A 2003, 66A(3), 441–449.

    Article  CAS  Google Scholar 

  3. Hong, Y.; Gao, C. Y.; Xie, Y.; Gong, Y. H.; Shen, J. C. Collagen-coated polylactide microspheres as chondrocyte microcarriers. Biomaterials 2005, 26(32), 6305–6313.

    Article  CAS  PubMed  Google Scholar 

  4. Thissen, H.; Chang, K. Y.; Tebb, T. A.; Tsai, W. B.; Glattauer, V.; Ramshaw, J. A. M.; Werkmeister, J. A. Synthetic biodegradable microparticles for articular cartilage tissue engineering. J. Biomed. Mater. Res. Part A 2006, 77A(3), 590–598.

    Article  CAS  Google Scholar 

  5. Liu, X.; Jin, X.; Ma, P. X. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nat. Mater. 2011, 10(5), 398–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee, J. H.; Lee, C. S.; Cho, K. Y. Enhanced cell adhesion to the dimpled surfaces of golf-ball-shaped microparticles. ACS Appl. Mater. Interfaces 2014, 6(19), 16493–16497.

    Article  CAS  PubMed  Google Scholar 

  7. Kavas, A.; Keskin, D.; Altunbas, K.; Tezcaner, A. Raloxifene-/raloxifene-poly(ethylene glycol) conjugate-loaded microspheres: a novel strategy for drug delivery to bone forming cells. Int. J. Pharm. 2016, 510(1), 168–183.

    Article  CAS  PubMed  Google Scholar 

  8. Garkhal, K.; Verma, S.; Tikoo, K.; Kumar, N. Surface modified poly(L-lactide-co-epsilon-caprolactone) microspheres as scaffold for tissue engineering. J. Biomed. Mater. Res. Part A 2007, 82A(3), 747–756.

    Article  CAS  Google Scholar 

  9. Lee, S. H.; Shin, H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv. Drug Deliv. Rev. 2007, 59(4-5), 339–359.

    Article  CAS  PubMed  Google Scholar 

  10. Luciani, A.; Coccoli, V.; Orsi, S.; Ambrosio, L.; Netti, P. A. PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles. Biomaterials 2008, 29(36), 4800–4807.

    Article  CAS  PubMed  Google Scholar 

  11. Bae, S. E.; Choi, D. H.; Han, D. K.; Park, K. Effect of temporally controlled release of dexamethasone on in vivo chondrogenic differentiation of mesenchymal stromal cells. J. Control. Release 2010, 143(1), 23–30.

    Article  CAS  PubMed  Google Scholar 

  12. Le Ray, A. M.; Chiffoleau, S.; Iooss, P.; Grimandi, G.; Gouyette, A.; Daculsi, G., and Merle, C. Vancomycin encapsulation in biodegradable poly(ε-caprolactone) microparticles for bone implantation. Influence of the formulation process on size, drug loading, in vitro release and cytocompatibility. Biomaterials 2003, 24(3), 443–449.

    PubMed  Google Scholar 

  13. Bae, S. E.; Son, J. S.; Park, K.; Han, D. K. Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine. J. Control. Release 2009, 133(1), 37–43.

    Article  CAS  PubMed  Google Scholar 

  14. Malda, J.; Frondoza, C. G. Microcarriers in the engineering of cartilage and bone. Trends Biotechnol. 2006, 24(7), 299–304.

    Article  CAS  PubMed  Google Scholar 

  15. Crotts, G.; Park, T. G. Preparation of porous and nonporous biodegradable polymeric hollow microspheres. J. Control. Release 1995, 35(2-3), 91–105.

    Article  CAS  Google Scholar 

  16. Hong, S. J.; Yu, H. S.; Kim, H. W. Tissue engineering polymeric microcarriers with macroporous morphology and bone-bioactive surface. Macromol. Biosci. 2009, 9(7), 639–645.

    Article  CAS  PubMed  Google Scholar 

  17. Fan, J. B.; Song, Y. Y.; Wang, S. T.; Jiang, L.; Zhu, M. Q.; Guo, X. L. A synergy effect between the hydrophilic PEG and rapid solvent evaporation induced formation of tunable porous microspheres from a triblock copolymer. RSC Adv. 2014, 4(2), 629–633.

    Article  CAS  Google Scholar 

  18. Kim, T. K.; Yoon, J. J.; Lee, D. S.; Park, T. G. Gas foamed open porous biodegradable polymeric microspheres. Biomaterials 2006, 27(2), 152–159.

    Article  CAS  PubMed  Google Scholar 

  19. Kang, S. W.; Yang, H. S.; Seo, S. W.; Han, D. K.; Kim, B. S. Apatite-coated poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for bone tissue engineering. J. Biomed. Mater. Res. Part A 2008, 85A(3), 747–756.

    Article  CAS  Google Scholar 

  20. Wu, D.; Wang, C.; Yang, J.; Wang, H.; Han, H.; Zhang, A.; Yang, Y.; Li, Q. Improving the intracellular drug concentration in lung cancer treatment through the codelivery of doxorubicin and mir-519c mediated by porous PLGA microparticle. Mol. Pharm. 2016, 13(11), 3925–3933.

    Article  CAS  PubMed  Google Scholar 

  21. Iqbal, M.; Zafar, N.; Fessi, H.; Elaissari, A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int. J. Pharm. 2015, 496(2), 173–190.

    Article  CAS  PubMed  Google Scholar 

  22. Shi, X. D.; Sun, L.; Jiang, J.; Zhang, X. L.; Ding, W. J.; Gan, Z. H. Biodegradable polymeric microcarriers with controllable porous structure for tissue engineering. Macromol. Biosci. 2009, 9(12),1211–1218.

    Article  CAS  PubMed  Google Scholar 

  23. Shi, X. D.; Sun, L.; Gan, Z. H. Formation mechanism of solvent-induced porous PLA microspheres. Acta Polymerica Sinica (in Chinese) 2011, (8), 866–873.

    Article  CAS  Google Scholar 

  24. Wang, S. Y.; Shi, X. D.; Gan, Z. H.; Wang, F. Preparation of PLGA microspheres with different porous morphologies. Chinese J. Polym. Sci. 2015, 33(1), 128–136.

    Article  CAS  Google Scholar 

  25. Odonnell, P. B.; McGinity, J. W. Preparation of microspheres by the solvent evaporation technique. Adv. Drug Deliv. Rev. 1997, 28(1), 25–42.

    Article  CAS  Google Scholar 

  26. Meng, F. T.; Ma, G. H.; Qiu, W.; Su, Z. G. W/O/W double emulsion technique using ethyl acetate as organic solvent: effects of its diffusion rate on the characteristics of microparticles. J. Control. Release 2003, 91(3), 407–416.

    Article  CAS  PubMed  Google Scholar 

  27. Zheng, Y. H.; Cheng, Y. L.; Chen, J. J.; Ding, J. X.; Li, M. Q.; Li, C.; Wang, J.C.; Chen, X. S. Injectable hydrogel-microsphere construct with sequential degradation for locally synergistic chemotherapy. ACS Appl. Mater. Interfaces 2017, 9(4), 3487–3496.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, J.; Liu, H.; Ding J. X.; Wu, J.; Zhuang, X. L.; Chen, X. S.; Wang, J. C.; Yin, J. B.; Li, Z. M. High-pressure compression-molded porous resorbable polymer/ hydroxyapatite composite scaffold for cranial bone regeneration. ACS Biomater. Sci. Eng. 2016, 2(9), 1471–1482.

    Article  CAS  Google Scholar 

  29. Liu, D. H.; Ding, J. X.; Xu, W. G.; Song, X. F.; Zhuang, X. L.; Chen, X. S. Stereocomplex micelles based on 4-armed poly(ethylene glycol)-polylactide enantiomeric copolymers for drug delivery. Acta polymerica sinica (in Chinese) 2014, (9), 1265–1273.

    Google Scholar 

  30. Shen, K. X.; Li, D.; Guan, J. J.; Ding, J. X.; Wang, Z. T.; Gu, J. K.; Liu, T. J.; Chen, X. S. Targeted sustained delivery of antineoplastic agent with multicomponent polylactide stereocomplex micelle. Nanomed. Nanotechnol. Biol. Med. 2017, 13(3), 1279–1288.

    Article  CAS  Google Scholar 

  31. Feng, X. R.; Ding, J. X.; Gref, R.; Chen, X. S. Poly(b-cyclodextrin)-mediated polylactide-cholesterol stereocomplex micelles for controlled drug delivery. Chinese J. Polym. Sci. 2017, 35(6), 693–699.

    Article  CAS  Google Scholar 

  32. Wang, J. X.; Xu, W. G.; Ding, J. X.; Lu, S. F.; Wang, X. Q.; Wang, C. X.; Chen, X. S. Cholesterol-enhanced polylactide-based stereocomplex micelle for effective delivery of doxorubicin. Materials 2015, 8(1), 216–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ho, M. L.; Fu, Y. C.; Wang, G. J.; Chen, H. T.; Chang, J. K.; Tsai, T. H.; Wang, C. K. Controlled release carrier of BSA made by W/O/W emulsion method containing PLGA and hydroxyapatite. J. Control. Release 2008, 128(2), 142–148.

    Article  CAS  PubMed  Google Scholar 

  34. Sturesson, C.; Carlfors, J. Incorporation of protein in PLG-microspheres with retention of bioactivity. J. Control. Release 2000, 67(2-3), 171–178.

    Article  CAS  PubMed  Google Scholar 

  35. Florence A. T.; Whitehill D. The formulation and stability of multiple emulsions. Int. J. Pharm. 1982, 11, 277–308.

    Article  CAS  Google Scholar 

  36. Sah, H. K.; Smith, M. S.; Chern, R. T. A novel method of preparing PLGA microcapsules utilizing methylethyl ketone. Pharm. Res. 1996, 13(3), 360–367.

    Article  CAS  PubMed  Google Scholar 

  37. Schugens, C.; Laruelle, N.; Nihant, N.; Grandfils, C.; Jerome, R.; Teyssie, P. Effect of the emulsion stability on the morphology and porosity of semicrystalline poly(L-lactide) microparticles prepared by W/O/W double emulsion-evaporation. J. Control. Release 1994, 32(2), 161–176.

    Article  CAS  Google Scholar 

  38. Rezwan, K.; Chen, Q. Z.; Blaker, J. J.; Boccaccini, A. R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006, 27(18), 3413–3431.

    Article  CAS  PubMed  Google Scholar 

  39. Bodmeier, R.; McGinity, J.W. Solvent selection in the preparation of poly(DL-lactide) microspheres prepared by the solvent evaporation method. Int. J. Pharm. 1988, 43(1-2), 179–186.

    Article  CAS  Google Scholar 

  40. Kojima, R.; Yoshida, T.; Tasaki, H.; Umejima, H.; Maeda, M.; Higashi, Y.; Watanabe, S.; Oku, N. Release mechanisms of tacrolimus-loaded PLGA and PLA microspheres and immunosuppressive effects of the microspheres in a rat heart transplantation model. Int. J. Pharm. 2015, 492(1-2), 20–27.

    Article  CAS  PubMed  Google Scholar 

  41. Wei, G. B. Pettway, G. J.; McCauley, L. K.; Ma, P. X. The release profiles and bioactivity of parathyroid hormone from poly(lactic-co-glycolic acid) microspheres. Biomaterials 2004, 25(2), 345–352.

    Article  CAS  PubMed  Google Scholar 

  42. Jones, K. H.; Senft, J. A. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate propidium iodide. J. Histochem. Cytochem. 1985, 33(1), 77–79.

    Article  CAS  PubMed  Google Scholar 

  43. Webb, K.; Hlady, V.; Tresco, P. A. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J. Biomed. Mater. Res. 1998, 41(3), 422–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim, H. K.; Chung, H. J.; Park, T. G. Biodegradable polymeric microspheres with "open/closed" pores for sustained release of human growth hormone. J. Control. Release 2006, 112(2), 167–174.

    Article  CAS  PubMed  Google Scholar 

  45. Lee, J.; Lee, K. Y. Injectable microsphere/hydrogel combination systems for localized protein delivery. Macromol. Biosci. 2009, 9(7), 671–676.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, Y.; Sun, L.; Jiang, J. A.; Zhang, X. L.; Ding, W. J.; Gan, Z. H. Biodegradation-induced surface change of polymer microspheres and its influence on cell growth. Polym. Degrad. Stab. 2010, 95(8), 1356–1364.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51003109, 51025314 and 50573085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hua Gan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, XD., Sun, PJ. & Gan, ZH. Preparation of Porous Polylactide Microspheres and Their Application in Tissue Engineering. Chin J Polym Sci 36, 712–719 (2018). https://doi.org/10.1007/s10118-018-2079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2079-x

Keywords

Navigation