Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Synthetic Two-dimensional Organic Structures

  • 798 Accesses

  • 13 Citations

Abstract

Synthetic two-dimensional (2D) polymers have totally different topology structures compared with traditional linear or branched polymers. The peculiar 2D structures bring superior properties. Although, from linear to 2D polymers, the study of these new materials is still in its infancy, they already show potential applications especially in optoelectronics, membranes, energy storage and catalysis, etc. In this review, we summarize the recent progress of the 2D materials from three respects: (1) Chemistry—different types of polymerization reactions or supramolecular assembly to construct the 2D networks were described; (2) Preparation methods—surface science, crystal engineering approaches and solution synthesis were introduced; (3) Functionalization and some early applications.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Boott, C. E.; Nazemi, A.; Manners, I. Synthetic covalent and non-covalent 2D materials. Angew. Chem. Int. Ed. 2015, 54(47), 13876–13894

  2. 2

    Baek, K.; Hwang, I.; Roy, I.; Shetty, D.; Kim, K. Self-assembly of nanostructured materials through irreversible covalent bond formation. Acc. Chem. Res. 2015, 48(8), 2221–2229

  3. 3

    Zhuang, X.; Mai, Y.; Wu, D.; Zhang, F.; Feng, X. Two-dimensional soft nanomaterials: a fascinating world of materials. Adv. Mater. 2015, 27(3), 403–427

  4. 4

    Xiang, Z.; Cao, D.; Dai, L. Well-defined two dimensional covalent organic polymers: rational design, controlled syntheses, and potential applications. Polym. Chem. 2015, 6(11), 1896–1911

  5. 5

    Payamyar, P.; King, B. T.; Ottinger, H. C.; Schluter, A. D. Two-dimensional polymers: concepts and perspectives. Chem. Commun. 2016, 52(1), 18–34

  6. 6

    Rodriguez-San-Miguel, D.; Amo-Ochoa, P.; Zamora, F. MasterChem: cooking 2D-polymers. Chem. Commun. 2016, 52(22), 4113–4127

  7. 7

    Cai, S. L.; Zhang, W. G.; Zuckermann, R. N.; Li, Z. T.; Zhao, X.; Liu, Y. The organicflatland—recent advances in synthetic 2D organic layers. Adv. Mater. 2015, 27(38), 5762–5770

  8. 8

    Lackinger, M. On-surface polymerization—a versatile synthetic route to two-dimensional polymers. Polym. Int. 2015, 64(9), 1073–1078

  9. 9

    Chen, T.; Wang, D.; Wan, L. J. Two-dimensional chiral molecular assembly on solid surfaces: formation and regulation. Natl. Sci. Rev. 2015, 2(2), 205–216

  10. 10

    Colson, J. W.; Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nat. Chem. 2013, 5, 453–465

  11. 11

    Zang, Y.; Aoki, T.; Teraguchi, M.; Kaneko, T.; Ma, L.; Jia, H. Two-dimensional and related polymers: concepts, synthesis, and their potential application as separation membrane materials. Polym. Rev. 2015, 55, (1), 57–89

  12. 12

    Novoselov, K. S. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669

  13. 13

    Staudinger, H. Über Polymerisation. Berichte der deutschen chemischen gesellschaft (a and b series) 1920, 53(6), 1073–1085

  14. 14

    Sakamoto, J.; van Heijst, J.; Lukin, O.; Schlüter, A. D. Two-dimensional polymers: just a dream of synthetic chemists? Angew. Chem. Int. Ed. 2009, 48, 1030–1069

  15. 15

    Jin, Y.; Yu, C.; Denman, R. J.; Zhang, W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 2013, 42(16), 6634–6654

  16. 16

    Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 2002, 41(6), 898–952

  17. 17

    de Feyter, S.; de Schryver, F. C. Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chem. Soc. Rev. 2003, 32(3), 139–150

  18. 18

    Elemans, J. A.; Lei, S.; de Feyter, S. Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. Angew. Chem. Int. Ed. 2009, 48(40), 7298–332

  19. 19

    Michl, J.; Magnera, T. F. Two-dimensional supramolecular chemistry with molecular tinkertoys. Proc. Nat. Acad. Sci. 2002, 99, 4788–4792

  20. 20

    Pawin, G.; Wong, K. L.; Kwon, K. Y.; Bartels, L. A homomolecular porous network at a Cu(111) surface. Science 2006, 313(5789), 961–962

  21. 21

    Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.; Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 2003, 424(6952), 1029–1031

  22. 22

    Sirtl, T.; Schlögl, S.; Rastgoo-Lahrood, A.; Jelic, J.; Neogi, S.; Schmittel, M.; Heckl, W. M.; Reuter, K.; Lackinger, M. Control of intermolecular bonds by deposition rates at room temperature: hydrogen bonds versus metal coordination in trinitrile monolayers. J. Am. Chem. Soc. 2013, 135(2), 691–695

  23. 23

    Blunt, M. O.; Russell, J. C.; Giménez-López, M. D. C.; Garrahan, J. P.; Lin, X.; Schröder, M.; Champness, N. R.; Beton, P. H. Random tiling and topological defects in a two-dimensional molecular network. Science 2008, 322(5904), 1077–1081

  24. 24

    Shi, Z.; Lin, N. Porphyrin-based two-dimensional coordination kagome lattice self-assembled on a Au(111) surface. J. Am. Chem. Soc. 2009, 131(15), 5376–5377

  25. 25

    Kuhne, D.; Klappenberger, F.; Decker, R.; Schlickum, U.; Brune, H.; Klyatskaya, S.; Ruben, M.; Barth, J. V. High-quality 2D metal-organic coordination network providing giant cavities within mesoscale domains. J. Am. Chem. Soc. 2009, 131(11), 3881–3883

  26. 26

    Liu, J.; Lin, T.; Shi, Z.; Xia, F.; Dong, L.; Liu, P. N.; Lin, N. Structural transformation of two-dimensional metal-organic coordination networks driven by intrinsic in-plane compression. J. Am. Chem. Soc. 2011, 133(46), 18760–18766

  27. 27

    Shi, Z.; Liu, J.; Lin, T.; Xia, F.; Liu, P. N.; Lin, N. Thermodynamics and selectivity of two-dimensional metallo-supramolecular self-assembly resolved at molecular scale. J. Am. Chem. Soc. 2011, 133(16), 6150–6153

  28. 28

    Shi, Z.; Lin, N. Structural and chemical control in assembly of multicomponent metal-organic coordination networks on a surface. J. Am. Chem. Soc. 2010, 132(31), 10756–10761

  29. 29

    Adisoejoso, J.; Li, Y.; Liu, J.; Liu, P. N.; Lin, N. Two-dimensional metallo-supramolecular polymerization: toward size-controlled multi-strand polymers. J. Am. Chem. Soc. 2012, 134(45), 18526–18529

  30. 30

    Walch, H.; Dienstmaier, J.; Eder, G.; Gutzler, R.; Schlögl, S.; Sirtl, T.; Das, K.; Schmittel, M.; Lackinger, M. Extended two-dimensional metal-organic frameworks based on thiolate-copper coordination bonds. J. Am. Chem. Soc. 2011, 133(20), 7909–7915

  31. 31

    Schlickum, U.; Decker, R.; Klappenberger, F.; Zoppellaro, G.; Klyatskaya, S.; Ruben, M.; Silanes, I.; Arnau, A.; Kern, K.; Brune, H.; Barth, J. V. Metal-organic honeycomb nanomeshes with tunable cavity size. Nano lett. 2007, 7(12), 3813–3817

  32. 32

    Kley, C. S.; Cechal, J.; Kumagai, T.; Schramm, F.; Ruben, M.; Stepanow, S.; Kern, K. Highly adaptable two-dimensional metal-organic coordination networks on metal surfaces. J. Am. Chem. Soc. 2012, 134(14), 6072–6075

  33. 33

    Lei, S.; Tahara, K.; de Schryver, F. C.; van der Auweraer, M.; Tobe, Y.; de Feyter, S. One building block, two different supramolecular surface-confined patterns: concentration in control at the solid-liquid interface. Angew. Chem. Int. Ed. 2008, 47(16), 2964–2968

  34. 34

    Furukawa, S.; Uji-i, H.; Tahara, K.; Ichikawa, T.; Sonoda, M.; de Schryver, F. C.; Tobe, Y.; De Feyter, S. Molecular geometry directed kagomé and honeycomb networks: toward tow-dimensional crystal engineering. J. Am. Chem. Soc. 2006, 128(11), 3502–3503

  35. 35

    Berner, S.; de Wild, M.; Ramoino, L.; Ivan, S.; Baratoff, A.; Güntherodt, H. J.; Suzuki, H.; Schlettwein, D.; Jung, T. A. Adsorption and two-dimensional phases of a large polar molecule: sub-phthalocyanine on Ag (111). Phys. Rev. B 2003, 68(11), 115410

  36. 36

    Kley, C. S. Highly adaptable two-dimensional metal-organic coordination networks on metal surfaces. J. Am. Chem. Soc. 2012, 134, 6072–6075

  37. 37

    Zwaneveld, N. A. A.; Pawlak, R.; Abel, M.; Catalin, D.; Gigmes, D.; Bertin, D.; Porte, L. Organized formation of 2D extended covalent organic frameworks at surfaces. J. Am. Chem. Soc. 2008, 130(21), 6678–6679

  38. 38

    Dienstmaier, J. F.; Medina, D. D.; Dogru, M.; Knochel, P.; Bein, T.; Heckl, W. M.; Lackinger, M. Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. ACS Nano 2012, 6(8), 7234–7242

  39. 39

    Lafferentz, L. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 2012, 4, 215–220

  40. 40

    Bieri, M.; Treier, M.; Cai, J.; Ait-Mansour, K.; Ruffieux, P.; Groning, O.; Groning, P.; Kastler, M.; Rieger, R.; Feng, X.; Mullen, K.; Fasel, R. Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. 2009, 45, 6919–6921

  41. 41

    Blunt, M. O.; Russell, J. C.; Champness, N. R.; Beton, P. H. Templating molecular adsorption using a covalent organic framework. Chem. Commun. 2010, 46(38), 7157–7159

  42. 42

    Bieri, M.; Nguyen, M. T.; Gröning, O.; Cai, J.; Treier, M.; Aït-Mansour, K.; Ruffieux, P.; Pignedoli, C. A.; Passerone, D.; Kastler, M.; Müllen, K.; Fasel, R. Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 2010, 132(46), 16669–16676

  43. 43

    Gutzler, R.; Walch, H.; Eder, G.; Kloft, S.; Heckl, W. M.; Lackinger, M. Surface mediated synthesis of 2D covalent organic frameworks: 1,3,5-tris(4-bromophenyl)benzene on graphite(001), Cu(111), and Ag(110). Chem. Commun. 2009, 29, 4456–4458

  44. 44

    Cardenas, L.; Gutzler, R.; Lipton-Duffin, J.; Fu, C.; Brusso, J. L.; Dinca, L. E.; Vondracek, M.; Fagot-Revurat, Y.; Malterre, D.; Rosei, F.; Perepichka, D. F. Synthesis and electronic structure of a two dimensional [small pi]-conjugated polythiophene. Chem. Sci. 2013, 4(8), 3263–3268

  45. 45

    Weigelt, S.; Busse, C.; Bombis, C.; Knudsen, M. M.; Gothelf, K. V.; Strunskus, T.; Wöll, C.; Dahlbom, M.; Hammer, B.; Lægsgaard, E.; Besenbacher, F.; Linderoth, T. R. Covalent interlinking of an aldehyde and an amine on a Au(111) surface in ultrahigh vacuum. Angew. Chem. Int. Ed. 2007, 46(48), 9227–9230

  46. 46

    Weigelt, S.; Busse, C.; Bombis, C.; Knudsen, M. M.; Gothelf, K. V.; Lægsgaard, E.; Besenbacher, F.; Linderoth, T. R. Surface synthesis of 2D branched polymer nanostructures. Angew. Chem. Int. Ed. 2008, 47(23), 4406–4410

  47. 47

    Marele, A. C.; Mas-Balleste, R.; Terracciano, L.; Rodriguez-Fernandez, J.; Berlanga, I.; Alexandre, S. S.; Otero, R.; Gallego, J. M.; Zamora, F.; Gomez-Rodriguez, J. M. Formation of a surface covalent organic framework based on polyester condensation. Chem. Commun. 2012, 48(54), 6779–6781

  48. 48

    Schmitz, C. H.; Ikonomov, J.; Sokolowski, M. Two-dimensional polyamide networks with a broad pore size distribution on the Ag(111) surface. J. Phys. Chem. C 2011, 115(15), 7270–7278

  49. 49

    Treier, M.; Richardson, N. V.; Fasel, R. Fabrication of surface-supported low-dimensional polyimide networks. J. Am. Chem. Soc. 2008, 130(43), 14054–14055

  50. 50

    Treier, M.; Fasel, R.; Champness, N. R.; Argent, S.; Richardson, N. V. Molecular imaging of polyimide formation. Phys. Chem. Chem. Phys. 2009, 11(8), 1209–1214

  51. 51

    Zhang, Y. Q.; Kepčija, N.; Kleinschrodt, M.; Diller, K.; Fischer, S.; Papageorgiou, A. C.; Allegretti, F.; Björk, J.; Klyatskaya, S.; Klappenberger, F.; Ruben, M.; Barth, J. V. Homo-coupling of terminal alkynes on a noble metal surface. Nat. Commun. 2012, 3, DOI: 10.1038/ncomms2291

  52. 52

    Gao, H. Y.; Wagner, H.; Zhong, D.; Franke, J. H.; Studer, A.; Fuchs, H. Glaser coupling at metal surfaces. Angew. Chem. Int. Ed. 2013, 52(14), 4024–4028

  53. 53

    Eichhorn, J.; Heckl, W. M.; Lackinger, M. On-surface polymerization of 1,4-diethynylbenzene on Cu(111). Chem. Commun. 2013, 49(28), 2900–2902

  54. 54

    Díaz Arado, O.; Mönig, H.; Wagner, H.; Franke, J. H.; Langewisch, G.; Held, P. A.; Studer, A.; Fuchs, H. On-surface azide-alkyne cycloaddition on Au(111). ACS Nano 2013, 7(10), 8509–8515

  55. 55

    Schlogl, S.; Sirtl, T.; Eichhorn, J.; Heckl, W. M.; Lackinger, M. Synthesis of two-dimensional phenylene-boroxine networks through in vacuo condensation and on-surface radical addition. Chem. Commun. 2011, 47(45), 12355–12357

  56. 56

    Côté, A. P.; Benin, A. I.; Ockwig, N. W.; Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310(5751), 1166

  57. 57

    Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 2013, 42(2), 548–568

  58. 58

    Feng, X.; Ding, X.; Jiang, D. Covalent organic frameworks. Chem. Soc. Rev. 2012, 41(18), 6010–6022

  59. 59

    Jin, Y.; Hu, Y.; Zhang, W. Tessellated multiporous two-dimensional covalent organic frameworks. Nat. Rev. Chem. 2017, 1, DOI: 10.1038/s41570-017-0056

  60. 60

    Bunck, D. N.; Dichtel, W. R. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc. 2013, 135, 14952–14955

  61. 61

    Berlanga, I.; Mas-Ballesté, R.; Zamora, F. Tuning delamination of layered covalent organic frameworks through structural design. Chem. Commun. 2012, 48, 7976–7978

  62. 62

    Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S. M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 2013, 135(47), 17853–17861

  63. 63

    Yang, S.; Bruller, S.; Wu, Z. S.; Liu, Z.; Parvez, K.; Dong, R.; Richard, F.; Samori, P.; Feng, X.; Mullen, K. Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene. J. Am. Chem. Soc. 2015, 137(43), 13927–13932

  64. 64

    Zeng, Z.; Yin, Z.; Huang, X.; Li, H.; He, Q.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 2011, 50(47), 11093–7

  65. 65

    Berlanga, I.; Ruiz-González, M. L.; González-Calbet, J. M.; Fierro, J. L. G.; Mas-Ballesté, R.; Zamora, F. Delamination of layered covalent organic frameworks. Small 2011, 7, 1207–1211

  66. 66

    Colson, J. W.; Mann, J. A.; DeBlase, C. R.; Dichtel, W. R. Patterned growth of oriented 2D covalent organic framework thin films on single-layer graphene. J. Polym. Sci., Part A: Polym. Chem. 2015, 53(2), 378–384

  67. 67

    Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 2011, 332(6026), 228–231

  68. 68

    Tanoue, R.; Higuchi, R.; Enoki, N.; Miyasato, Y.; Uemura, S.; Kimizuka, N.; Stieg, A. Z.; Gimzewski, J. K.; Kunitake, M. Thermodynamically controlled self-assembly of covalent nanoarchitectures in aqueous solution. ACS Nano 2011, 5(5), 3923–3929

  69. 69

    Xu, L.; Zhou, X.; Yu, Y.; Tian, W. Q.; Ma, J.; Lei, S. Surface-confined crystalline two-dimensional covalent organic frameworks via on-surface Schiff-base coupling. ACS Nano 2013, 7(9), 8066–8073

  70. 70

    Xu, L.; Zhou, X.; Tian, W. Q.; Gao, T.; Zhang, Y. F.; Lei, S.; Liu, Z. F. Surface-confined single-layer covalent organic framework on single-layer graphene grown on copper foil. Angew. Chem. Int. Ed. 2014, 53(36), 9564–9568

  71. 71

    Yue, J. Y.; Liu, X. H.; Sun, B.; Wang, D. The on-surface synthesis of imine-based covalent organic frameworks with non-aromatic linkage. Chem. Commun. 2015, 51(76), 14318–14321

  72. 72

    Guan, C. Z.; Wang, D.; Wan, L. J. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 2012, 48, 2943–2945

  73. 73

    Liu, X. H.; Guan, C. Z.; Ding, S. Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions. J. Am. Chem. Soc. 2013, 135(28), 10470–10474

  74. 74

    Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46(19), 3256–3258

  75. 75

    Wang, S.; Yi, L.; Halpert, J. E.; Lai, X.; Liu, Y.; Cao, H.; Yu, R.; Wang, D.; Li, Y. A novel and highly efficient photocatalyst based on P25-graphdiyne nanocomposite. Small 2012, 8(2), 265–271

  76. 76

    Yang, N.; Liu, Y.; Wen, H.; Tang, Z.; Zhao, H.; Li, Y.; Wang, D. Photocatalytic properties of graphdiyne and graphene modified TiO2: from theory to experiment. ACS Nano 2013, 7(2), 1504–1512

  77. 77

    Du, H.; Deng, Z.; Lü, Z.; Yin, Y.; Yu, L.; Wu, H.; Chen, Z.; Zou, Y.; Wang, Y.; Liu, H.; Li, Y. The effect of graphdiyne doping on the performance of polymer solar cells. Synth. Met. 2011, 161(19–20), 2055–2057

  78. 78

    Zhang, S. L.; Du, H. P.; He, J. J.; Huang, C. S.; Liu, H. B.; Cui, G. L.; Li, Y. L. Nitrogen-doped graphdiyne applied for lithium-ion storage. ACS Appl. Mater. Interfaces 2016, 8, (13)8467–8473

  79. 79

    Yang, H.; Zhang, S. L.; Han, L. H.; Zhang, Z.; Xue, Z.; Gao, J.; Li, Y. J.; Huang, C. S.; Yi, Y. P.; Liu, H. B.; Li, Y. L. High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl. Mater. Interfaces 2016, 8(8), 5366–5375

  80. 80

    Du, H. P.; Yang, H.; Huang, C. S.; He, J. J.; Liu, H. B.; Li, Y. L. Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities. Nano Energy 2016, 22, 615–622

  81. 81

    Zhang, S. L.; Liu, H. B.; Huang, C. S.; Cui, G. L.; Li, Y. L. Bulk graphdiyne powder applied for highly efficient lithium storage. Chem. Commun. 2015, 51(10), 1834–1837

  82. 82

    Huang, C. S.; Zhang, S. L.; Liu, H. B.; Li, Y. J.; Cui, G. T.; Li, Y. L. Graphdiyne for high capacity and long-life lithium storage. Nano Energy 2015, 11, 481–489

  83. 83

    Bauer, T.; Zheng, Z.; Renn, A.; Enning, R.; Stemmer, A.; Sakamoto, J.; Schlüter, A. D. Synthesis of free-standing, monolayered organometallic sheets at the air/water interface. Angew. Chem. Int. Ed. 2011, 50(34), 7879–7884

  84. 84

    Zheng, Z.; Ruiz-Vargas, C. S.; Bauer, T.; Rossi, A.; Payamyar, P.; Schütz, A.; Stemmer, A.; Sakamoto, J.; Schlüter, A. D. Square-micrometer-sized, free-standing organometallic sheets and their square-centimeter-sized multilayers on solid substrates. Macromol. Rapid. Commun. 2013, 34(21), 1670–1680

  85. 85

    Zheng, Z.; Opilik, L.; Schiffmann, F.; Liu, W.; Bergamini, G.; Ceroni, P.; Lee, L. T.; Schütz, A.; Sakamoto, J.; Zenobi, R.; VandeVondele, J.; Schlüter, A. D. Synthesis of two-dimensional analogues of copolymers by site-to-site transmetalation of organometallic monolayer sheets. J. Am. Chem. Soc. 2014, 136(16), 6103–6110

  86. 86

    Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J. H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M.; Nishihara, H. π-Conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc. 2013, 135(7), 2462–2465

  87. 87

    Kambe, T.; Sakamoto, R.; Kusamoto, T.; Pal, T.; Fukui, N.; Hoshiko, K.; Shimojima, T.; Wang, Z.; Hirahara, T.; Ishizaka, K.; Hasegawa, S.; Liu, F.; Nishihara, H. Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator. J. Am. Chem. Soc. 2014, 136(41), 14357–14360

  88. 88

    Dong, R.; Pfeffermann, M.; Liang, H.; Zheng, Z.; Zhu, X.; Zhang, J.; Feng, X. Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 2015, 54(41), 12058–12063

  89. 89

    Sakamoto, R.; Hoshiko, K.; Liu, Q.; Yagi, T.; Nagayama, T.; Kusaka, S.; Tsuchiya, M.; Kitagawa, Y.; Wong, W.; Nishihara, H. A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet. Nat. Commun. 2015, 6, DOI: 10.1038/ncomms7713

  90. 90

    Motoyama, S.; Makiura, R.; Sakata, O.; Kitagawa, H. Highly crystalline nanofilm by layering of porphyrin metal-organic framework sheets. J. Am. Chem. Soc. 2011, 133(15), 5640–5643

  91. 91

    Chen, Y.; Li, M.; Payamyar, P.; Zheng, Z.; Sakamoto, J.; Schlüter, A. D. Room temperature synthesis of a covalent monolayer sheet at air/water interface using a shape-persistent photoreactive amphiphilic monomer. ACS Macro Lett. 2014, 3(2), 153–158

  92. 92

    Payamyar, P.; Kaja, K.; Ruiz-Vargas, C.; Stemmer, A.; Murray, D. J.; Johnson, C. J.; King, B. T.; Schiffmann, F.; VandeVondele, J.; Renn, A.; Götzinger, S.; Ceroni, P.; Schütz, A.; Lee, L. T.; Zheng, Z.; Sakamoto, J.; Schlüter, A. D. Synthesis of a covalent monolayer sheet by photochemical anthracene dimerization at the air/water interface and its mechanical characterization by AFM indentation. Adv. Mater. 2014, 26(13), 2052–2058

  93. 93

    Murray, D. J.; Patterson, D. D.; Payamyar, P.; Bhola, R.; Song, W.; Lackinger, M.; Schlüter, A. D.; King, B. T. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 2015, 137(10), 3450–3453

  94. 94

    Dai, W.; Shao, F.; Szczerbiński, J.; McCaffrey, R.; Zenobi, R.; Jin, Y.; Schlüter, A. D.; Zhang, W. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface. Angew. Chem. Int. Ed. 2016, 55(1), 213–217

  95. 95

    Sahabudeen, H.; Qi, H. Y.; Glatz, B. A.; Tranca, D.; Dong, R. H.; Hou, Y.; Zhang, T.; Kuttner, C.; Lehnert, T.; Seifert, G.; Kaiser, U.; Fery, A.; Zheng, Z. K.; Feng, X. L. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun. 2016, DOI: 10.1038/ncomms13461

  96. 96

    Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J. Am. Chem. Soc. 2017, 139(8), 3145–3152

  97. 97

    Makiura, R.; Motoyama, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, H. Surface nano-architecture of a metal0organic framework. Nat. Mater. 2010, 9(7), 565–571

  98. 98

    Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabres i Xamena, F. X.; Gascon, J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2015, 14(1), 48–55

  99. 99

    Hu, M.; Ishihara, S.; Yamauchi, Y. Bottom-up synthesis of monodispersed single-crystalline cyano-bridged coordination polymer nanoflakes. Angew. Chem. Int. Ed. 2013, 52(4), 1235–1239

  100. 100

    Netzer, N. L.; Dai, F. R.; Wang, Z.; Jiang, C. pH-Modulated molecular assemblies and surface properties of metal-organic supercontainers at the air-water interface. Angew. Chem. Int. Ed. 2014, 53(41), 10965–10969

  101. 101

    Xu, G.; Yamada, T.; Otsubo, K.; Sakaida, S.; Kitagawa, H. Facile “modular assembly” for fast construction of a highly oriented crystalline MOF nanofilm. J. Am. Chem. Soc. 2012, 134(40), 16524–16527

  102. 102

    Makiura, R.; Konovalov, O. Interfacial growth of large-area single-layer metal-organic framework nanosheets. Sci. Rep. 2013, 3, DOI: 10.1038/srep02506

  103. 103

    Pfeffermann, M.; Dong, R.; Graf, R.; Zajaczkowski, W.; Gorelik, T.; Pisula, W.; Narita, A.; Mullen, K.; Feng, X. Free-standing monolayer two-dimensional supramolecular organic framework with good internal order. J. Am. Chem. Soc. 2015, 137(45), 14525–14532

  104. 104

    Kory, M. J.; Bergeler, M.; Reiher, M.; Schlüter, A. D. Facile synthesis and theoretical conformation analysis of a triazine-based double-decker rotor molecule with three anthracene blades. Chem. Eur. J. 2014, 20, 6934–6938

  105. 105

    Kissel, P.; Erni, R.; Schweizer, W. B.; Rossell, M. D.; King, B. T.; Bauer, T.; Götzinger, S.; Schlüter, A. D.; Sakamoto, J. A two-dimensional polymer prepared by organic synthesis. Nat. Chem. 2012, 4(4), 287–291

  106. 106

    Kory, M. J.; Worle, M.; Weber, T.; Payamyar, P.; van de Poll, S. W.; Dshemuchadse, J.; Trapp, N.; Schluter, A. D. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat. Chem. 2014, 6(9), 779–784

  107. 107

    Kissel, P.; Murray, D. J.; Wulftange, W. J.; Catalano, V. J.; King, B. T. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat. Chem. 2014, 6(9), 774–778

  108. 108

    Bhola, R.; Payamyar, P.; Murray, D. J.; Kumar, B.; Teator, A. J.; Schmidt, M. U.; Hammer, S. M.; Saha, A.; Sakamoto, J.; Schluter, A. D.; King, B. T. A two-dimensional polymer from the anthracene dimer and triptycene motifs. J. Am. Chem. Soc. 2013, 135(38), 14134–14141

  109. 109

    Lange, R. Z.; Hofer, G.; Weber, T.; Schlüter, A. D. A two-dimensional polymer synthesized through topochemical [2 + 2]-cycloaddition on the multigram scale. J. Am. Chem. Soc. 2017, 139(5), 2053–2059

  110. 110

    Zhang, K. D.; Tian, J.; Hanifi, D.; Zhang, Y.; Sue, A. C. H.; Zhou, T. Y.; Zhang, L.; Zhao, X.; Liu, Y.; Li, Z. T. Toward a single-layer two-dimensional honeycomb supramolecular organic framework in water. J. Am. Chem. Soc. 2013, 135(47), 17913–17918

  111. 111

    Cao, L. Y.; Lin, Z. K.; Peng, F.; Wang, W. W.; Huang, R. Y.; Wang, C.; Yan, J. W.; Liang, J.; Zhang, Z. M.; Zhang, T.; Long, L. S.; Sun, J. L.; Lin, W. B. Self-supporting metal-organic layers as single-site solid catalysts. Angew. Chem. Int. Ed. 2016, 55(16), 4962–4966

  112. 112

    Baek, K.; Yun, G.; Kim, Y.; Kim, D.; Hota, R.; Hwang, I.; Xu, D.; Ko, Y. H.; Gu, G. H.; Suh, J. H.; Park, C. G.; Sung, B. J.; Kim, K. Free-standing, single-monomer-thick two-dimensional polymers through covalent self-assembly in aolution. J. Am. Chem. Soc. 2013, 135(17), 6523–6528

  113. 113

    Zhou, T. Y.; Lin, F.; Li, Z. T.; Zhao, X. Single-step solution-phase synthesis of free-standing two-dimensional polymers and their evolution into hollow spheres. Macromolecules 2013, 46(19), 7745–7752

  114. 114

    Kim, J.; Baek, K.; Shetty, D.; Selvapalam, N.; Yun, G.; Kim, N. H.; Ko, Y. H.; Park, K. M.; Hwang, I.; Kim, K. Reversible morphological transformation between polymer nanocapsules and thin films through dynamic covalent self-assembly. Angew. Chem. Int. Ed. 2015, 127(9), 2731–2735

  115. 115

    Calik, M.; Sick, T.; Dogru, M.; Döblinger, M.; Datz, S.; Budde, H.; Hartschuh, A.; Auras, F.; Bein, T. From highly crystalline to outer surface-functionalized covalent organic frameworks—a modulation approach. J. Am. Chem. Soc. 2015, 138(4), 1234–1239

  116. 116

    Zhao, Y.; Bernitzky, R. H. M.; Kory, M. J.; Hofer, G.; Hofkens, J.; Schlüter, A. D. Decorating the edges of a 2D polymer with a fluorescence label. J. Am. Chem. Soc. 2016, 138(28), 8976–8981.

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21604046), the National Young Thousand Talents Program, Shandong Provincial Natural Science Foundation, China (No. ZR2016XJ004).

Author information

Correspondence to Zhi-Bo Li or Ying-Jie Zhao.

Additional information

Invited Review

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Kan, X., Wu, C. et al. Synthetic Two-dimensional Organic Structures. Chin J Polym Sci 36, 425–444 (2018). https://doi.org/10.1007/s10118-018-2070-6

Download citation

Keywords

  • Two-dimensional structures
  • Interfacial synthesis
  • 2D crystal
  • Covalent organic frameworks (COFs)
  • Supramolecular assembly