Chinese Journal of Polymer Science

, Volume 35, Issue 10, pp 1212–1221 | Cite as

Assembly of highly ordered 2D arrays of silver-PNIPAM hybrid microgels

Paper

Abstract

A strategy was developed for the synthesis of highly ordered 2D arrays of Ag-PNIPAM hybrid microgel. The highly ordered 2D arrays of PNIPAM microgel were prepared by dispersing PNIPAM microgel on a charge-reversible substrate. The microgel spheres self-assembled into a 3D colloidal crystal, and the first 111 plane was fixed in situ onto the substrate as a result of spontaneous charge reversal of the substrate, leaving a high-quality 2D array of PNIPAM microgel. Ag nanoparticles were then synthesized in situ inside the microgel spheres by introduction of Ag+ ions into the microgel spheres and reduction with sodium borohydride. The resulting 2D arrays are highly ordered. The inter-particle distance in the array can be tuned. In addition, the method allows the synthesis of large size arrays and the use of nonplanar substrate.

Keywords

2D colloidal crystal Microgel Charge reversal Self-assembly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10118_2017_1962_MOESM1_ESM.pdf (179 kb)
Assembly of Highly Ordered 2D Arrays of Silver-PNIPAM Hybrid Microgels

References

  1. 1.
    Cong, H.L., Yu, B., Tang, J.G., Li, Z.J. and Liu, X.S., Chem. Soc. Rev., 2013, 42(19): 7774CrossRefGoogle Scholar
  2. 2.
    Xue, F., Meng, Z.H., Wang, F.Y., Wang, Q., Xue, M. and Xu, Z.B., J. Mater. Chem. A, 2014, 2(25): 9559CrossRefGoogle Scholar
  3. 3.
    Ye, X.Z. and Qi, L.M., Sci. China Chem., 2014, 57(1): 58CrossRefGoogle Scholar
  4. 4.
    Yang, S.K. and Lei, Y., Nanoscale, 2011, 3(7): 2768CrossRefGoogle Scholar
  5. 5.
    Zhang, J.H., Li, Y.F., Zhang, X.M. and Yang, B., Adv. Mater., 2010, 22: 4249CrossRefGoogle Scholar
  6. 6.
    Vogel, N., Weiss, C.K. and Landfester, K., Soft Matter, 2012, 8(15): 4044CrossRefGoogle Scholar
  7. 7.
    Zhang, J.T., Wang, L.L., Lamont, D.N., Velankar, S.S. and Asher, S.A., Angew. Chem. Int. Ed., 2012, 51(25): 6117CrossRefGoogle Scholar
  8. 8.
    Men, D.D., Zhang, H.H., Hang, L.F., Liu, D.L., Li, X., Cai, W.P., Xiong, Q.H. and Li, Y., J. Mater. Chem. C, 2015, 3(15): 3659CrossRefGoogle Scholar
  9. 9.
    Kargar, M., Pruden, A. and Ducker, W.A., J. Mater. Chem. B, 2014, 2(36): 5962CrossRefGoogle Scholar
  10. 10.
    Ye, R., Ye, Y.H., Zhou, Z.T. and Xu, H.H., Langmuir, 2013, 29(6): 1796CrossRefGoogle Scholar
  11. 11.
    Sun, X.Y., Li, Y., Zhang, T.H., Ma, Y.Q. and Zhang, Z.X., Langmuir, 2013, 29(24): 7216CrossRefGoogle Scholar
  12. 12.
    Ng, E.C.H., Chin, K.M. and Wong, C.C., Langmuir, 2011, 27(6): 2244CrossRefGoogle Scholar
  13. 13.
    Born, P., Munoz, A., Cavelius, C. and Kraus, T., Langmuir, 2012, 28(22): 8300CrossRefGoogle Scholar
  14. 14.
    Xue, F., Asher, S.A., Meng, Z., Wang, F.Y., Lu, W., Xue, M. and Qi, F.L., RSC Adv., 2015, 5(24): 18939CrossRefGoogle Scholar
  15. 15.
    Xue, F., Meng, Z.H., Qi, F.L., Xue, M. and Qiu, L., Colloid. Polym. Sci., 2016, 294(2): 479CrossRefGoogle Scholar
  16. 16.
    Yang, H.T., Gozubenli, N., Fang, Y. and Jiang, P., Langmuir, 2013, 29(25): 7674CrossRefGoogle Scholar
  17. 17.
    Jiang, P. and McFarland, M.J., J. Am. Chem. Soc., 2004, 126(42): 13778CrossRefGoogle Scholar
  18. 18.
    Zhang, G., Wang, D.Y., Gu, Z.Z., Hartmann, J. and Möhwald, H., Chem. Mater., 2005, 17(21): 5268CrossRefGoogle Scholar
  19. 19.
    Schmidt, S., Hellweg, T. and von Klitzing, R., Langmuir, 2008, 24(21): 12595CrossRefGoogle Scholar
  20. 20.
    Horecha, M., Senkovskyy, V., Synytska, A., Stamm, M., Chervanyov, A.I. and Kiriy, A., Soft Matter, 2010, 6(23): 5980CrossRefGoogle Scholar
  21. 21.
    Pelton, R.H. and Chibante, P., Colloids Surf., 1986, 20(3): 247CrossRefGoogle Scholar
  22. 22.
    Tsuji, S. and Kawaguchi, H., Langmuir, 2005, 21(18): 8439CrossRefGoogle Scholar
  23. 23.
    Lu, Y. and Drechsler, M., Langmuir, 2009, 25(22): 13100CrossRefGoogle Scholar
  24. 24.
    Horigome, K. and Suzuki, D., Langmuir, 2012, 28(36): 12962CrossRefGoogle Scholar
  25. 25.
    Rey, B.M., Elnathan, R., Ditcovski, R., Geisel, K., Zanini, M., Fernandez-Rodriguez, M., Naik, V.V., Frutiger, A., Richtering, W., Ellenbogen, T., Voelcker, N.H. and Isa, L., Nano Lett., 2016, 16(1): 157CrossRefGoogle Scholar
  26. 26.
    Quint, S.B. and Pacholski, C., Soft Matter, 2011, 7(8): 3735CrossRefGoogle Scholar
  27. 27.
    Geisel, K., Richtering, W. and Isa, L., Soft Matter, 2014, 10(40): 7968CrossRefGoogle Scholar
  28. 28.
    Vogel, N., Fernandez-Lopez, C., Perez-Juste, J., Liz-Marzan, L.M., Landfester, K. and Weiss, C.K., Langmuir, 2012, 28(24): 8985CrossRefGoogle Scholar
  29. 29.
    Xia, Y.Q., He, X.L., Cao, M.W., Wang, X.J., Sun, Y.W., He, H., Xu, H. and Lu, J.R., Biomacromolecules, 2014, 15(11): 4021CrossRefGoogle Scholar
  30. 30.
    Li, X.Y., Weng, J.Y., Guan, Y. and Zhang, Y.J., Langmuir, 2016, 32(16): 3977CrossRefGoogle Scholar
  31. 31.
    Weng, J.Y., Li, X.Y., Guan, Y., Zhu, J.X.X. and Zhang, Y.J., RSC Adv., 2016, 6(85): 82006CrossRefGoogle Scholar
  32. 32.
    Weng, J.Y., Li, X.Y., Guan, Y., Zhu, X.X. and Zhang, Y.J., Langmuir, 2016, 32(48): 12876CrossRefGoogle Scholar
  33. 33.
    Hu, Z.B. and Huang, G., Angew. Chem. Int. Ed., 2003, 42(39): 4799CrossRefGoogle Scholar
  34. 34.
    Debord, J.D., Eustis, S., Debord, S.B., Lofye, M.T. and Lyon, L.A., Adv. Mater., 2002, 14(9): 658CrossRefGoogle Scholar
  35. 35.
    Chen, M., Zhou, L., Guan, Y. and Zhang, Y.J., Angew. Chem. Int. Ed., 2013, 52(38): 9961CrossRefGoogle Scholar
  36. 36.
    Liu, Y., Guan, Y. and Zhang, Y.J., Macromol. Rapid Commun., 2014, 35(6): 630CrossRefGoogle Scholar
  37. 37.
    Chen, M., Zhang, Y.P., Jia, S.Y., Zhou, L., Guan, Y. and Zhang, Y.J., Angew. Chem. Int. Ed., 2015, 54(32): 9257CrossRefGoogle Scholar
  38. 38.
    Gao, J. and Hu, Z.B., Langmuir, 2002, 18(4): 1360CrossRefGoogle Scholar
  39. 39.
    Debord, J.D. and Lyon, L.A., J. Mater. Chem. B, 2000, 104(27): 6327Google Scholar
  40. 40.
    Iyer, A.S. and Lyon, L.A., Angew. Chem. Int. Ed., 2009, 48(25): 4562CrossRefGoogle Scholar
  41. 41.
    Hellweg, T., Angew. Chem. Int. Ed., 2009, 48(37): 6777CrossRefGoogle Scholar
  42. 42.
    Xu, S.Q., Zhang, J.G., Paquet, C., Lin, Y.K. and Kumacheva, E., Adv. Funct. Mater., 2003, 13(6): 468CrossRefGoogle Scholar
  43. 43.
    Suzuki, D., McGrath, J.G., Kawaguchi, H. and Lyon, L.A., J. Mater. Chem. C, 2007, 111(15): 5667Google Scholar
  44. 44.
    Jaber, S., Karg, M., Morfa, A. and Mulvaney, P., Phys. Chem. Chem. Phys., 2011, 13(13): 5576CrossRefGoogle Scholar
  45. 45.
    Karg, M. and Hellweg, T., Curr. Opin. Colloid. In., 2009, 14(6): 438CrossRefGoogle Scholar
  46. 46.
    Lu, Y., Mei, Y., Drechsler, M. and Ballauff, M., Angew. Chem. Int. Ed., 2006, 45(5): 813CrossRefGoogle Scholar
  47. 47.
    Liu, Y.Y., Liu, X.Y., Yang, J.M., Lin, D.L., Chen, X. and Zha, L.S., Colloids Surf. A, 2012, 393: 105CrossRefGoogle Scholar
  48. 48.
    Wu, W.T., Zhou, T., Aiello, M. and Zhou, S.Q., Biosens. Bioelectron., 2010, 38(7): 1343Google Scholar
  49. 49.
    Suzuki, D. and Kawaguchi, H., Langmuir, 2006, 22(8): 3818CrossRefGoogle Scholar
  50. 50.
    Zhang, Y.P., Liu, K., Guan, Y. and Zhang, Y.J., RSC Adv., 2012, 2(11): 4768CrossRefGoogle Scholar
  51. 51.
    Suzuki, D. and Kawaguchi, H., Langmuir, 2006, 22(8): 3818CrossRefGoogle Scholar
  52. 52.
    Zhang, J.G., Xu, S.Q. and Kumacheva, E., J. Am. Chem. Soc., 2004, 126(25): 7908CrossRefGoogle Scholar
  53. 53.
    Dong, Y., Ma, Y., Zhai, T.Y., Shen, F.G., Zeng, Y., Fu, H. and Yao, J.N., Macromol. Rapid Commun., 2007, 28(24): 2339CrossRefGoogle Scholar
  54. 54.
    Jones, C.D. and Lyon, L.A., Macromolecules, 2000, 33(22): 8301CrossRefGoogle Scholar
  55. 55.
    Xu, P., van Kirk, E.A., Zhan, Y., Murdoch, W.J., Radosz, M. and Shen, Y., Angew. Chem. Int. Ed., 2007, 46(26): 4999CrossRefGoogle Scholar
  56. 56.
    Zhang, W.J., Zhang, A.J., Guan, Y., Zhang, Y.J. and Zhu, X.X., J. Mater. Chem., 2011, 21(2): 548CrossRefGoogle Scholar
  57. 57.
    Zhang, W.J., Song, J., Liao, W., Guan, Y., Zhang, Y.J. and Zhu, X.X., J. Mater. Chem. C, 2013, 1(10): 2036CrossRefGoogle Scholar
  58. 58.
    Song, J., Hou, J.X., Tian, L.L., Guan, Y., Zhang, Y.J. and Zhu, X.X., Polymer, 2015, 63: 237CrossRefGoogle Scholar
  59. 59.
    Prieto, P., Nistor, V., Nouneh, K., Oyama, M., Abd-Lefdil, M. and Díaz, R., Appl. Surf. Sci., 2012, 258(22): 8807CrossRefGoogle Scholar
  60. 60.
    Rengarajan, R., Mittleman, D., Rich, C. and Colvin, V., Phys. Rev. E, 2005, 71(1): 016615CrossRefGoogle Scholar
  61. 61.
    Prevo, B.G. and Velev, O.D., Langmuir, 2004, 20(6): 2099CrossRefGoogle Scholar
  62. 62.
    Zhang, J., Chao, X., Liu, X. and Asher, S.A., Chem. Commun., 2013, 49(56): 6337CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Institute of Polymer Chemistry, College of ChemistryNankai UniversityTianjinChina
  2. 2.Department of ChemistryUniversité de MontréalMontrealCanada

Personalised recommendations