Advertisement

Chinese Journal of Polymer Science

, Volume 35, Issue 3, pp 365–371 | Cite as

Fluorescent detection of Cu(II) by chitosan-based AIE bioconjugate

  • Ya-lan Liu
  • Zheng-ke Wang (王征科)
  • Wei Qin
  • Qiao-ling Hu (胡巧玲)
  • Ben Zhong Tang (唐本忠)
Papers

Abstract

Detection of Cu(II) is very important in disease diagnose, biological system detection and environmental monitoring. Previously, we found that the product TPE-CS prepared by attaching the chromophores of tetraphenylethylene (TPE) to the chitosan (CS) chains showed excellent fluorescent properties. In this study, we tried to use TPE-CS for detecting Cu(II) because of the stable complexation of CS with heavy metals and the luminosity mechanism of the Restriction of Intramolecular Rotations (RIR) for aggregation-induced emission (AIE)-active materials. The fluorescence intensity changed when TPE-CS was contacted with different metal ions, to be specific, no change for Na+, slightly increase for Hg2+, Pb2+, Zn2+, Cd2+, Fe2+, Fe3+ due to the RIR caused by the complexation between CS and metal ions. However, for Cu2+, an obvious fluorescence decrease was observed because of the Photoinduced-Electron-Transfer (PET). Moreover, we found that the quenched FL intensity of TPE-CS was proportional to the concentration of Cu(II) in the range of 5 μmol/L to 100 μmol/L, which provided a new way to quantitatively detect Cu(II). Besides, TPE-CS has excellent water-solubility as well as absorbability (the percentage of removal, R = 84%), which is an excellent detection probe and remover for Cu(II).

Keywords

Aggregation-induced emission Chitosan Cu(II) Fluorescent detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, F.Y., Li, Y.X., Li, W.Y., Chen, J., Zhang, Q.F., Shahzad, S.A. and Yu, C., Talanta, 2015, 132: 72CrossRefGoogle Scholar
  2. 2.
    Georgopoulos, P.G., Roy, A., Yonone, L.M.J., Opiekun, R.E. and Lioy, P.J.J., Toxicol. Environ. Health B: Crit. Rev., 2001, 4(4): 341CrossRefGoogle Scholar
  3. 3.
    Bonham, M., O'Connor, J.M., Hannigan, B.M. and Strain, J.J., Brit. J. Nutr., 2007, 87(5): 393CrossRefGoogle Scholar
  4. 4.
    Sanji, T., Nakamura, M. and Tanaka, M., Tetrahedron Lett., 2011, 52(26): 3283CrossRefGoogle Scholar
  5. 5.
    Zietz, B.P., de Vergara, J.D. and Dunkelberg, H., Environ. Res., 2003, 92(2): 129CrossRefGoogle Scholar
  6. 6.
    Kumbhar, H.S., Yadav, U.N., Gadilohar, B.L. and Shankarling, G.S., Sensor Actuat. B: Chem., 2014, 203: 174CrossRefGoogle Scholar
  7. 7.
    Kandasamy, K., Ganesabaskaran, S., Pachamuthu, M.P. and Ramanathan, A., Spectrochim. Acta A, 2015, 148: 184CrossRefGoogle Scholar
  8. 8.
    Gonzales, A.P., Firmino, M.A., Nomura, C.S., Rocha, F.R., Oliveira, P.V. and Gaubeur, I., Anal. Chim. Acta, 2009, 636(2): 198CrossRefGoogle Scholar
  9. 9.
    Becker, J.S., Zoriy, M.V., Pickhardt, C., Palomero, G.N. and Zilles, K., Anal. Chem., 2005, 77(10): 3208CrossRefGoogle Scholar
  10. 10.
    Chen, X.L., Zeng, W.F., Yang, X.D., Lu, X.W., Qu, J.Q. and Liu, R.Y., Chinese J. Polym. Sci., 2016, 34(3): 324CrossRefGoogle Scholar
  11. 11.
    Cotruvo, J.A., Jr., Aron, A.T., Ramos, T.K.M. and Chang, C.J., Chem. Soc. Rev., 2015, 44(13): 4400Google Scholar
  12. 12.
    Domaille, D.W., Que, E.L. and Chang, C.J., Nat. Chem. Biol., 2008, 4(3): 168CrossRefGoogle Scholar
  13. 13.
    Yuan, W.Z., Lu, P., Chen, S.M., Lam, J.W.Y., Wang, Z.M., Liu, Y., Kwok, H.S., Ma, Y.G. and Tang, B.Z., Adv. Mater., 2010, 22(19): 2159CrossRefGoogle Scholar
  14. 14.
    Hong, Y.N., Chen, S.J., Leung, C.W.T., Lam, J.W.Y., Liu, J.Z., Tseng, N.W., Kwok, R.T.K., Yu, Y., Wang, Z.K. and Tang, B.Z., ACS Appl. Mater. Inter., 2011, 3(9): 3411CrossRefGoogle Scholar
  15. 15.
    Feng, H.T., Song, S., Chen, Y.C., Shen, C.H. and Zheng, Y.S., J. Mater. Chem. C, 2014, 2(13): 2353CrossRefGoogle Scholar
  16. 16.
    Nie, J.Y., Wang, Z.K., Zhang, K. and Hu, Q.L., RSC Adv., 2015, 5(47): 37346CrossRefGoogle Scholar
  17. 17.
    Nie, J.Y., Wang, Z.K., Zhang, J.Z., Yang, L., Pang, Y.C. and Hu, Q.L., RSC Adv., 2015, 5(83): 68243CrossRefGoogle Scholar
  18. 18.
    Huang, X.F., Jia, J.W., Wang, Z.K. and Hu, Q.L., Chinese J. Polym. Sci., 2014, 33(2): 284CrossRefGoogle Scholar
  19. 19.
    Zhang, K., Zhuang, P.Y., Wang, Z.K., Li, Y.L., Jiang, Z.Q., Hu, Q.L., Liu, M.Y. and Zhao, Q.X., Carbohydr. Polym., 2012, 90(4): 1515CrossRefGoogle Scholar
  20. 20.
    Nie, J.Y., Lu, W.T., Ma, J.J., Yang, L., Wang, Z.K., Qin, A. and Hu, Q.L., Sci. Rep., 2015, 5: 7635CrossRefGoogle Scholar
  21. 21.
    Fang, J.D., Zhang, K., Jia, J.W., Wang, Z.K. and Hu, Q.L., RSC Adv., 2015, 5(120): 99418CrossRefGoogle Scholar
  22. 22.
    Wang, Z.K. and Hu, Q.L., Biomed. Mater., 2010, 5(4): 045007CrossRefGoogle Scholar
  23. 23.
    Wang, Z.K., Hu, Q.L. and Wang, Y.X., Sci. China Chem., 2011, 54(2): 380CrossRefGoogle Scholar
  24. 24.
    Huang, X.F., Sun, Y.F., Nie, J.Y., Lu, W.T., Yang, L., Zhang, Z.L., Yin, H.P., Wang, Z.K. and Hu, Q.L., Int. J. Biol. Macromol., 2015, 75: 322CrossRefGoogle Scholar
  25. 25.
    Ke, J.H., Wang, Z.K., Li, Y.Z. and Hu, Q.L., Chinese J. Polym. Sci., 2012, 30(3): 436CrossRefGoogle Scholar
  26. 26.
    Wang, Z.K., Hu, Q.L. and Cai, L., Chinese J. Polym. Sci., 2010, 28(5): 801CrossRefGoogle Scholar
  27. 27.
    Zhang, K., Zhao, M., Cai, L., Wang, Z.K., Sun, Y.F. and Hu, Q.L., Chinese J. Polym. Sci., 2010, 28(4): 555CrossRefGoogle Scholar
  28. 28.
    Lee, S.J., Lee, S.S., Lah, M.S., Hong, J.M. and Jung, J.H., Chem. Commun., 2006, (43): 4539CrossRefGoogle Scholar
  29. 29.
    Wang, Z.K., Chen, S.J., Lam, J.W.Y., Qin, W., Kwok, R.T., Xie, N., Hu, Q. and Tang, B.Z., J. Am. Chem. Soc., 2013, 135(22): 8238CrossRefGoogle Scholar
  30. 30.
    Jia, J.W., Wang, Z.K., Lu, W.T., Yang, L., Wu, Q.W., Qin, W., Hu, Q.L. and Tang, B.Z., J. Mater. Chem. B, 2014, 2: 8406CrossRefGoogle Scholar
  31. 31.
    Wang, Z.K., Liu, Y.L., Jia, J.W., Chen, S.J., Qin, W., Hu, Q.L. and Tang, B.Z., J. Mater. Chem. B, 2016, 4: 5265CrossRefGoogle Scholar
  32. 32.
    Wang, Z.K., Nie, J.Y., Qin, W., Hu, Q.L. and Tang, B.Z., Nat. Commun., 2016, 7: 12033CrossRefGoogle Scholar
  33. 33.
    Li, M., Hong, Y.N., Wang, Z.K., Chen, S.J., Gao, M., Kwok, R.T.K., Qin, W., Lam, J.W.Y., Zheng, Q.C. and Tang, B.Z., Macromol. Rapid Commun., 2013, 34: 767CrossRefGoogle Scholar
  34. 34.
    Hong, Y.N., Lam, J.W.Y. and Tang, B.Z., Chem. Commun., 2009 (29): 4332CrossRefGoogle Scholar
  35. 35.
    Huang, H., Shi, F.P., Li, Y.N., Niu, L., Gao, Y., Shah, S.M. and Su, X.G., Sensor Actuat. B: Chem., 2013, 178: 532CrossRefGoogle Scholar
  36. 36.
    Xu, G.Y., Wang, J.F., Si, G.F., Wang, M.H., Xue, X., Wu, B.X. and Zhou, S.S., Sensor Actuat. B: Chem., 2016, 230: 684CrossRefGoogle Scholar
  37. 37.
    Li, Z.A., Lou, X.D., Yu, H.B., Li, Z. and Qin, J.G., Macromolecules, 2008, 41(20): 7433CrossRefGoogle Scholar
  38. 38.
    Zhang, S.R., Wang, Q., Tian, G.H. and Ge, H.G., Mater. Lett., 2014, 115: 233CrossRefGoogle Scholar
  39. 39.
    Wang, X., Chen, Q.Y., Yin, Z.L., Hu, H.P. and Xiao, Z.L., J. Cent. South. Univ. Technol., 2011, 18: 48CrossRefGoogle Scholar
  40. 40.
    Wu, Z.C., Wang, Z.Z., Liu, J., Yin, J.H. and Kuang, S.P., Colloid. Surface. A, 2016, 499: 141CrossRefGoogle Scholar
  41. 41.
    Azzam, E.M., Eshaq, G., Rabie, A.M., Bakr, A.A., Abd, E. A.A., El Metwally, A.E. and Tawfik, S.M., Int. J. Biol. Macromol., 2016, 89: 507CrossRefGoogle Scholar
  42. 42.
    Cao, W.X., Lin, G.L., Jin, L.S. and Wei, Z.H., Liaoning Chemical Industry (in Chinese), 2007, 36(8): 529Google Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang ProvinceHangzhouChina
  3. 3.Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionHong Kong University of Science and TechnologyClear Water Bay, Hong KongChina

Personalised recommendations