Advertisement

Chinese Journal of Polymer Science

, Volume 34, Issue 10, pp 1208–1219 | Cite as

Synthesis, curing and properties of poly(phthalazione ether sulfone ketone) copolymers crosslinked by click chemistry

  • Qin-zheng He
  • Jin-yan Wang (王锦艳)Email author
  • Lei Song
  • Xi-gao Jian
Papers

Abstract

Functionalized poly(phthalazinone ether sulfone ketone) was synthesized by successive chloromethylation and azidation, followed by curing reaction with the propargyl end-groups of various molecular weight crosslinking agents in the presence of Cu(I) catalyst via the azide-alkyne click reaction. The influences of the chain length of crosslinking agents on the poly(phthalazinone ether sulfone ketone) system were studied. FTIR and DSC tests demonstrated certain crosslinking by azide-alkyne reaction with the formation of triazole ring. DSC results showed that curing temperature shifted to lower temperatures considerably in the presence of Cu(I) catalyst. TGA showed cured polymers were of much higher thermal stability, including higher thermal decomposition temperatures and higher char-yielding properties. After being cured, the polymers became insoluble in organic solvents and the gel fraction of the cured polymers exceeded 71%. Wide-angle X-ray diffraction results indicated there was a short distance order in the poly(ether sulfone) (PES) main chain except for the azido methyl poly(phthalazinone ether sulfone ketone) and 4,4’ -bis(2-propynyloxy) biphenyl ( AMPPESK-BP) system.

Keywords

Poly(arylene ether sulfone) Crosslinking Click chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kurosawa, T., Higashihara, T. and Ueda, M., Polym. Chem., 2013, 4(1): 16CrossRefGoogle Scholar
  2. 2.
    Shi, J.L., Hu, H.S., Xia, Y.G. and Liu, Z.P., J. Mater. Chem. A., 2014, 2(24): 9134CrossRefGoogle Scholar
  3. 3.
    Yu, G.P., Liu, C., Wang, J.Y., Li, G.H., Han, Y.J. and Jian, X.G., Polymer, 2010, 51: 100CrossRefGoogle Scholar
  4. 4.
    Li, W.W., Tang, H.Y., Chen, X.F., Fan, X.H. and Zhou, Q.F., Polymer, 2008, 49: 4080CrossRefGoogle Scholar
  5. 5.
    Fache, B., Gallot, B., Gelin, M.P., Milano, J.C. and Pham, Q.T., J. Appl. Polym. Sci., 2013, 127(5): 3798CrossRefGoogle Scholar
  6. 6.
    Sava, M., J. Appl. Polym. Sci., 2009, 112(3): 1399CrossRefGoogle Scholar
  7. 7.
    Wang, Y., Wang, S.J., Bian, C., Zhong, Y.H. and Jing, X.L., Polym. Degrad. Stab., 2015, 111: 239CrossRefGoogle Scholar
  8. 8.
    Kimura, H., Matsumoto, A. and Ohtsuka, K., J. Appl. Polym. Sci., 2009, 112(3): 1762CrossRefGoogle Scholar
  9. 9.
    Qian, L.J., Qiu, Y., Wang, J.Y. and Xi, W., Polymer, 2015, 68: 262CrossRefGoogle Scholar
  10. 10.
    Tu, J.W., Tucker, S.J., Christensen, S., Sayed, A.R., Jarrett, W.L. and Wiggins, J.S., Macromolecules, 2015, 48(6): 1748CrossRefGoogle Scholar
  11. 11.
    Chen, F., Yuan, L., Gu, A.J., Lin, C. and Liang, G,Z., Polym. Eng. Sci., 2013, 9(53): 1871CrossRefGoogle Scholar
  12. 12.
    CheOhashi, S., Kilbane, J., Heyl, T. and Ishida, H., Macromolecules, 2015, 48(23): 8412CrossRefGoogle Scholar
  13. 13.
    Dumas, L., Bonnaud, L., Olivier, M., Poorteman, M. and Dubois, P., Eur. Polym. J., 2016, 75: 486CrossRefGoogle Scholar
  14. 14.
    Chang, H.C., Lin, H.T. and Lin, C.H., Polym. Chem., 2012, 3(4): 970CrossRefGoogle Scholar
  15. 15.
    Harrison, W.L., Hickner, M.A., Kim, Y.S. and McGrath, J.E., Fuel cells, 2005, 5(2): 201CrossRefGoogle Scholar
  16. 16.
    Ren, J.N., Zhang, S.L., Liu, Y., Wang, Y., Pang, J.H. and Wang, Q.H., J. Membr. Sci., 2013, 434: 161CrossRefGoogle Scholar
  17. 17.
    Yang, S., Wang, J., Huo, S.Q., Wang, J.P. and Tang, Y.S., Polym. Degrad. Stab., 2016, 126: 9CrossRefGoogle Scholar
  18. 18.
    Saba, N., Jawaid, M. and Paridah, M.T., Polym. Adv. Technol., 2016, 126: 11Google Scholar
  19. 19.
    Wang, X.S., Pang, H.C. and Lin, Y., Polym. Degrad. Stab., 2016, 98: 2609CrossRefGoogle Scholar
  20. 20.
    Mercado, L.A., Galia, M. and Cadiz, V., J. Appl. Polym. Sci., 2006, 44(5): 1676CrossRefGoogle Scholar
  21. 21.
    Kiuchi, Y., Iji, M. and Shukichi, T., Polym. Degrad. Stab., 2014, 109: 336CrossRefGoogle Scholar
  22. 22.
    Lin, C.H., Wang, Y.R., Feng, Y.R. and Juang, T.Y., Polymer., 2014, 54: 1612CrossRefGoogle Scholar
  23. 23.
    Wang, L.L., Luo, F., Dang, L.L. and Luo, M.B., J. Mater. Chem., 2015, 3: 13724CrossRefGoogle Scholar
  24. 24.
    Guan, Z., Huang, Y.M. and Wang, W.D., Anal. Chim. Acta., 2008, 627(2): 225CrossRefGoogle Scholar
  25. 25.
    Lin, C.H., Chen, J.C., Huang, C.M., Jehng, J.M., Chang, H.C. and Su, W.C., Polymer, 2013, 54: 6936CrossRefGoogle Scholar
  26. 26.
    Czech, Z. and Wojciechowicz, M., Eur. Polym. J., 2006, 42: 2153CrossRefGoogle Scholar
  27. 27.
    Smitha, C., Sukumaran, K. and Reghunadhan, N., J. Appl. Polym. Sci., 2013, 130(2): 1289CrossRefGoogle Scholar
  28. 28.
    Kolb, H.C., Finn, M.G. and Sharpless, K.B., Angew. Chem. Int. Ed., 2001, 40: 2004CrossRefGoogle Scholar
  29. 29.
    Hvilsted, S., Polym. Int., 2012, 61(4): 485CrossRefGoogle Scholar
  30. 30.
    Dohler, D., Michael, P. and Wolfgang, H.B., Macromolecules, 2012, 45: 3335CrossRefGoogle Scholar
  31. 31.
    Sumerlin, S., Tsarevsky, N.V. and Louche, G., Macromolecules, 2005, 38: 7540CrossRefGoogle Scholar
  32. 32.
    Tsarevsky, N.V. and Matyjaszewski, K., Macromolecules, 2007, 40: 4439CrossRefGoogle Scholar
  33. 33.
    Zhou, H.X., Liu, C., Wang, J.Y. and Jian, X.G., Chinese J. Polym. Sci., 2011, 29(5): 719CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Qin-zheng He
    • 1
  • Jin-yan Wang (王锦艳)
    • 1
    Email author
  • Lei Song
    • 1
  • Xi-gao Jian
    • 1
  1. 1.Department of Polymer Science & MaterialsDalian University of TechnologyDalianChina

Personalised recommendations