Advertisement

Chinese Journal of Polymer Science

, Volume 34, Issue 1, pp 44–51 | Cite as

Preparation of water dispersible poly(methyl methacrylate)-based vesicles for facile persistent antibacterial applications

  • Ming-zhi Wang
  • Tao Wang
  • Kang Yuan
  • Jianzhong Du (杜建忠)Email author
Papers

Abstract

We report a facile strategy for incorporating persistent and effective antibacterial property into a widely used polymer, poly(methyl methacrylate) (PMMA), by copolymerizing methyl methacrylate (MMA) with 2-(tert-butylamino)ethyl methacrylate (TA) in one pot via atom transfer radical polymerization (ATRP). The subsequent self-assembly of the resultant poly(methyl methacrylate)-block-poly[(2-tert-butylamino)ethyl methacrylate] (PMMA20-b-PTA15) diblock copolymer affords well-defined water-dispersible vesicles, which can be facilely sprayed on the walls in hospitals for effective inhibition and killing of bacteria. 1H-NMR and gel permeation chromatography (GPC) studies confirmed the successful synthesis of welldefined copolymer. Transmission electron microscopy (TEM), atomic force microscopy (AFM) and dynamic light scattering (DLS) studies proved the formation of vesicles with narrow size distribution. DLS studies revealed the excellent stability of vesicles at various temperatures. Antibacterial tests showed effective antibacterial activities of polymer vesicles against both Gram-positive and Gram-negative bacteria. Moreover, this strategy may be extended for preparing a wide range of polymeric materials for facile antibacterial applications in many fields.

Keywords

ATRP Block Copolymer Vesicle Self-assembly Antibacterial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McDonnell, G. and Russell, A.D., Clin. Microbiol. Rev., 1999, 12(1): 147Google Scholar
  2. 2.
    Zhu, M., Zhang, L.S., Pei, X.F. and Xu, X., Biomed. Environ. Sci., 2008, 21(2): 157CrossRefGoogle Scholar
  3. 3.
    Schlueter, R., Röder, A., Czekalski, N., Gliesche, D., Mikolasch, A. and Schauer, F., Appl. Microbiol. Biotechnol., 2014, 98(1): 373CrossRefGoogle Scholar
  4. 4.
    Holderman, R.D., Parlette Iii, H.L., Terezhalmy, G.T., Pelleu, G.B. and Taybos, G.M., Oral Surg., Oral Med., Oral Pathol., 1986, 62(2): 142CrossRefGoogle Scholar
  5. 5.
    Slotosch, C.M., Kampf, G. and Löffler, H., Contact Dermatitis, 2007, 57(4): 235CrossRefGoogle Scholar
  6. 6.
    Harney, M.B., Pant, R.R., Fulmer, P.A. and Wynne, J.H., ACS Appl. Mater. Interfaces, 2009, 1(1): 39CrossRefGoogle Scholar
  7. 7.
    Kenawy, E.R., Abdel-Hay, F.I., El-Shanshoury, A.E.R.R. and El-Newehy, M.H., J. Polym. Sci., Part A: Polym. Chem., 2002, 40(14): 2384CrossRefGoogle Scholar
  8. 8.
    Moore, C.M., Hackman, S., Brennan, T. and Minteer, S.D., J. Membr. Sci., 2005, 254(1–2): 63CrossRefGoogle Scholar
  9. 9.
    Kong, H. and Jang, J., Langmuir, 2008, 24(5): 2051CrossRefGoogle Scholar
  10. 10.
    Chen, J., Wang, F.Y.K., Liu, Q.M. and Du, J.Z., Chem. Commun., 2014, 50(93): 14482CrossRefGoogle Scholar
  11. 11.
    Yuan, W.Z., Wei, J.R., Lu, H., Fan, L. and Du, J.Z., Chem. Commun., 2012, 48(54): 6857CrossRefGoogle Scholar
  12. 12.
    Wang, M.Z. and Du, J.Z., Acta Polymerica Sinica (in Chinese), 2014, (9): 1183Google Scholar
  13. 13.
    Wang, X., Liu, G., Hu, J., Zhang, G. and Liu, S., Angew. Chem., Int. Ed., 2014, 53(12): 3138CrossRefGoogle Scholar
  14. 14.
    Jensen, M.E., Evans, A.J., Mathis, J.M., Kallmes, D.F., Cloft, H.J. and Dion, J.E., Am. J. Neuroradiol., 1997, 18(10): 1897Google Scholar
  15. 15.
    van Oss, C.J., Chaudhury, M.K. and Good, R.J., Adv. Colloid Interface Sci., 1987, 28: 35CrossRefGoogle Scholar
  16. 16.
    Ash, B.J., Schadler, L.S. and Siegel, R.W., Mater. Lett., 2002, 55(1–2): 83CrossRefGoogle Scholar
  17. 17.
    Singh, N. and Khanna, P.K., Mater. Chem. Phys., 2007, 104(2–3): 367CrossRefGoogle Scholar
  18. 18.
    Ahlin, P., Kristl, J., Kristl, A. and Vrecer, F., Int. J. Pharm., 2002, 239(1–2): 113CrossRefGoogle Scholar
  19. 19.
    Wang, C.y., Yuan, Q., Yang, S.g. and Xu, J., Chinese J. Polym. Sci., 2015, 33(4): 661CrossRefGoogle Scholar
  20. 20.
    Yao, W., Wang, L., He, D., Jiang, S., An, L. and Zhang, H., Chinese J. Polym. Sci., 2005, 23(3): 337CrossRefGoogle Scholar
  21. 21.
    Inphonlek, S., Pimpha, N. and Sunintaboon, P., Colloids Surf., B, 2010, 77(2): 219Google Scholar
  22. 22.
    Zuo, H., Wu, D. and Fu, R., J. Appl. Polym. Sci., 2012, 125(5): 3537CrossRefGoogle Scholar
  23. 23.
    Seyfriedsberger, G., Rametsteiner, K. and Kern, W., Eur. Polym. J., 2006, 42(12): 3383CrossRefGoogle Scholar
  24. 24.
    Ignatova, M., Voccia, S., Gilbert, B., Markova, N., Cossement, D., Gouttebaron, R., Jérôme, R. and Jérôme, C., Langmuir, 2005, 22(1): 255CrossRefGoogle Scholar
  25. 25.
    Lenoir, S., Pagnoulle, C., Galleni, M., Compère, P., Jérôme, R. and Detrembleur, C., Biomacromolecules, 2006, 7(8): 2291CrossRefGoogle Scholar
  26. 26.
    Song, J., Kong, H. and Jang, J., Chem. Commun., 2009, 36: 5418CrossRefGoogle Scholar
  27. 27.
    Zhu, H.S., Geng, Q.R., Chen, W.Q., Zhu, Y.Q., Chen, J. and Du, J.Z., J. Mater. Chem. B, 2013, 1(40): 5496CrossRefGoogle Scholar
  28. 28.
    Suurkuusk, J., Lentz, B.R., Barenholz, Y., Biltonen, R.L. and Thompson, T.E., Biochemistry, 1976, 15(7): 1393CrossRefGoogle Scholar
  29. 29.
    Zhu, Z., Xu, H., Liu, H., González, Y.I., Kaler, E.W. and Liu, S., J. Phys. Chem. B, 2006, 110(33): 16309CrossRefGoogle Scholar
  30. 30.
    Liu, G., Wang, X., Hu, J., Zhang, G. and Liu, S., J. Am. Chem. Soc., 2014, 136(20): 7492CrossRefGoogle Scholar
  31. 31.
    Qin, J.Y., Liu, Q.M., Zhang, J.X., Chen, J., Chen, S., Zhao, Y. and Du, J.Z., ACS Appl. Mater. Interfaces, 2015, 7(25): 14043CrossRefGoogle Scholar
  32. 32.
    Jiang, J., Yan, W., Liu, L., Chang, W. and Li, J., Chinese J. Polym. Sci., 2014, 32(12): 1655CrossRefGoogle Scholar
  33. 33.
    Qi, R.G., Wu, S.H., Wang, Y., Chen, J., Xie, Z.G., Huang Y.B. and Jing, X.B., Chinese J. Polym. Sci., 2013, 31(6): 912CrossRefGoogle Scholar
  34. 34.
    Liu, T., Zhang, Y.F. and Liu, S.Y., Chinese J. Polym. Sci., 2013, 31(6): 924CrossRefGoogle Scholar
  35. 35.
    Hu, Y., Gan, L., Li, Q., Tao, H., Ye, L., Zhang, A. and Feng, Z., Chinese J. Polym. Sci., 2014, 32(12): 1714CrossRefGoogle Scholar
  36. 36.
    Zhu, Y.Q., Fan, L., Yang, B. and Du, J.Z., ACS Nano, 2014, 8(5): 5022CrossRefGoogle Scholar
  37. 37.
    Liu, Q.M., Chen, S., Chen, J. and Du, J.Z., Macromolecules, 2015, 48(3): 739CrossRefGoogle Scholar
  38. 38.
    Zhang, C., Zhu, Y.Q., Zhou, C.C., Yuan, W.Z. and Du, J.Z., Polym. Chem., 2013, 4(2): 255CrossRefGoogle Scholar
  39. 39.
    Harney, M.B., Pant, R.R., Fulmer, P.A. and Wynne, J.H., ACS Appl. Mater. Interfaces, 2008, 1(1): 39CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ming-zhi Wang
    • 1
  • Tao Wang
    • 1
  • Kang Yuan
    • 1
  • Jianzhong Du (杜建忠)
    • 1
    • 2
    Email author
  1. 1.Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of EducationTongji UniversityShanghaiChina
  2. 2.Shanghai Tenth People’s HospitalTongji University School of MedicineShanghaiChina

Personalised recommendations