Chinese Journal of Polymer Science

, Volume 33, Issue 7, pp 1048–1057 | Cite as

Poly(N-isopropylacrylamide)-grafted dual stimuli-responsive filter paper for protein separation

  • Qi-jia-yu Wu
  • Rui Wang
  • Ying Zhou
  • Ya-qin Huang
  • Raja Ghosh
  • Xiao-nong Chen (陈晓农)


Thermal and salt dual stimuli-responsive filter-paper-based membranes were prepared by UV-induced grafting of NIPAM-based polymers on paper surface. The grafting ratio could be controlled by monomer concentration during grafting polymerization. The results from pressure drop measurement of the mobile phase flowed cross the membrane demonstrate that an appropriate grafting ratio would be 8%–10%. Protein adsorption on the membrane through hydrophobic interaction could be promoted by increasing temperature and lyotropic salt concentration. The effect of grafted polymer structure on protein binding performance was studied. Filter paper grafted with NIPAM-based branched copolymer consisting of hydrophobic monomer moieties shows ten times higher protein binding capacity than that of the original filter paper. The separation of plasma proteins using the dual stimuli-responsive membrane was examined to demonstrate feasible application for hydrophobic interaction chromatographic separation of proteins.


N-isopropyl acrylamide Filter paper Surface grafting Stimuli-responsive hydrophobic transition Protein separation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fei, Z., Wan, L., Wang, W., Zhong, M. and Xu, Z., J. Membr. Sci., 2013, 432: 42CrossRefGoogle Scholar
  2. 2.
    Chen, Y., Xie, R. and Chu, L., J. Membr. Sci., 2013, 442: 206CrossRefGoogle Scholar
  3. 3.
    Nunes, S.P., Behzad, A.R., Hooghan, B., Sougrat, R., Karunakaran, M., Pradeep, N., Vainio, U. and Peinemann, K., ACS Nano, 2011, 5: 3516CrossRefGoogle Scholar
  4. 4.
    Hoare, T., Timko, B.P., Santamaria, J., Goya, G.F., Irusta, S., Lau, S., Stefanescu, C.F., Lin, D., Langer, R. and Kohane, D.S., Nano Lett., 2011, 11: 1395CrossRefGoogle Scholar
  5. 5.
    Mah, K.Z. and Ghosh, R., J. Membr. Sci., 2010, 360: 149CrossRefGoogle Scholar
  6. 6.
    Okamura, A., Itayagoshi, M., Hagiwara, T., Yamaguchi, M., Kanamori, T., Shinbo, T. and Wang, P.C., Biomaterials, 2005, 26: 1287CrossRefGoogle Scholar
  7. 7.
    Huang, R., Mah, K.Z., Malta, M., Kostanski, L.K., Filipe, C.D.M. and Ghosh, R., J. Membr. Sci., 2009, 345: 177CrossRefGoogle Scholar
  8. 8.
    Song, F., Wang, X. and Wang, Y., Eur. Polym. J., 2011, 47: 1885CrossRefGoogle Scholar
  9. 9.
    Tokarev, I. and Minko, S., Adv. Mater., 2010, 22: 3446CrossRefGoogle Scholar
  10. 10.
    Vertommen, M.A.M.E., Cornelissen, H.L., Dietz, C.H.J.T., Hoogenboom, R., Kemmere, M.F. and Keurentjes, J.T.F., J. Membr. Sci., 2008, 322: 243CrossRefGoogle Scholar
  11. 11.
    Ozeki, S., Kurashima, H., Miyanaga, M. and Nozawa, C., Langmuir, 2000, 16: 1478CrossRefGoogle Scholar
  12. 12.
    Wanderaa, D., Wickramasinghe, S.R. and Husson, S.M., J. Membr. Sci., 2010, 357: 6CrossRefGoogle Scholar
  13. 13.
    Biazar, E., Khorasani, M.T. and Joupari, M.D., Chinese J. Polym. Sci., 2013, 31(11): 1509CrossRefGoogle Scholar
  14. 14.
    Zhao, Y., Zhao, H., Chen, L., Feng, X., Zhang, Q., Wang, J. and Zhan, R., J. Polym. Res., 2013, 20: 58CrossRefGoogle Scholar
  15. 15.
    Wan, P.J., Tan, D.S., Li, Z.S., Zhang, X.Q., Li, J.H. and Tan, H., Chinese J. Polym. Sci., 2012, 30(2): 190CrossRefGoogle Scholar
  16. 16.
    Kuckling, D., Colloid. Polym. Sci., 2009, 287: 881CrossRefGoogle Scholar
  17. 17.
    Yu, J., Zhu, L., Zhu, B. and Xu, Y., J. Membr. Sci., 2011, 366: 176CrossRefGoogle Scholar
  18. 18.
    Sun, T., Zhang, Y.F., Chen, C.L., Gong, X.Z. and Meng, J.Q., Chinese J. Polym. Sci, 2014, 32(7): 880CrossRefGoogle Scholar
  19. 19.
    Li, J.H., Miao, J., Shao, X.S., Xu, Y.Y. and Zhang, Q.Q., Chinese J. Polym. Sci., 2013, 31(7): 994CrossRefGoogle Scholar
  20. 20.
    Hsu, C., Wu, C. and Liu, Y., J. Membr. Sci., 2014, 450: 257CrossRefGoogle Scholar
  21. 21.
    Zhang, Y., Furyk, S., Bergbreiter, D.E. and Cremer, P.S., J. Am. Chem. Soc., 2005, 127: 14505CrossRefGoogle Scholar
  22. 22.
    Roettger, B.F. and Ladisch, M.R., Biotech. Adv., 1989, 7: 15CrossRefGoogle Scholar
  23. 23.
    Zhang, R., Yang, G., Xin, P., Qi, L. and Chen, Y., J. Chromatogr. A, 2009, 1216: 2404CrossRefGoogle Scholar
  24. 24.
    Yu, D., Chen, X., Pelton, R. and Ghosh, R., Biotech. Bioeng., 2008, 99: 1434CrossRefGoogle Scholar
  25. 25.
    Yang, L. and Chen, P., J. Membr. Sci., 2002, 205: 141CrossRefGoogle Scholar
  26. 26.
    Wu, Q., Wang, R., Chen, X. and Ghosh, R., J. Membr. Sci., 2014, 471: 56CrossRefGoogle Scholar
  27. 27.
    Ghosh, R. and Wong, T., J. Membr. Sci., 2006, 281: 532CrossRefGoogle Scholar
  28. 28.
    Laemmli, U.K., Nature, 1970, 227: 680CrossRefGoogle Scholar
  29. 29.
    Roy, D., Guthrie, J.T. and Perrier, S., Macromolecules, 2005, 38: 10363CrossRefGoogle Scholar
  30. 30.
    To, B.C.S. and Lenhoff, A.M., J. Chromatogr. A, 2007, 1141: 191CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Qi-jia-yu Wu
    • 1
    • 2
  • Rui Wang
    • 1
  • Ying Zhou
    • 1
  • Ya-qin Huang
    • 1
  • Raja Ghosh
    • 2
  • Xiao-nong Chen (陈晓农)
    • 1
  1. 1.Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
  2. 2.Department of Chemical EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations