Chinese Journal of Polymer Science

, Volume 33, Issue 6, pp 797–814 | Cite as

Toward rational and modular molecular design in soft matter engineering

  • Wen-Bin Zhang (张文彬)
  • Stephen Z. D. Cheng (程正迪)
Feature Article


This essay discusses some preliminary thoughts on the development of a rational and modular approach for molecular design in soft matter engineering and proposes ideas of structural and functional synthons for advanced functional materials. It echoes the Materials Genome Initiative by practicing a tentative retro-functional analysis (RFA) scheme. The importance of hierarchical structures in transferring and amplifying molecular functions into macroscopic properties is recognized and emphasized. According to the role of molecular segments in final materials, there are two types of building blocks: structural synthon and functional synthon. Guided by a specific structure for a desired function, these synthons can be modularly combined in various ways to construct molecular scaffolds. Detailed molecular structures are then deduced, designed and synthesized precisely and modularly. While the assembled structure and property may deviate from the original design, the study may allow further refinement of the molecular design toward the target function. The strategy has been used in the development of soft fullerene materials and other giant molecules. There are a few aspects that are not yet well addressed: (1) function and structure are not fully decoupled and (2) the assembled hierarchical structures are sensitive to secondary interactions and molecular geometries across different length scales. Nevertheless, the RFA approach provides a starting point and an alternative thinking pathway by provoking creativity with considerations from both chemistry and physics. This is particularly useful for engineering soft matters with supramolecular lattice formation, as in giant molecules, where the synthons are relatively independent of each other.


Molecular design Materials genome Molecular nanoparticles Soft matter Synthon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dickens, C., “A christmas carol, and other haunting tales”, Doubleday, New York, 1st New York Public Library Collector’s edn., 1998Google Scholar
  2. 2.
    Whitesides, G.M. and Grzybowski, B., Science, 2002, 295(5564): 2418CrossRefGoogle Scholar
  3. 3.
    Cheng, S.Z.D., “Phase transitions in polymers: the role of metastable states”, Elsevier, Amsterdam, Boston, 1st ed., 2008Google Scholar
  4. 4.
    Cheng, S.Z.D., J. Polym. Sci., Part B: Polym. Phys., 2005, 43(23): 3361CrossRefGoogle Scholar
  5. 5.
    Damasceno, P.F., Engel, M. and Glotzer, S., Science, 2012, 337(6093): 453CrossRefGoogle Scholar
  6. 6.
    Lide, D.R., “CRC handbook of chemistry and physics: a ready reference book of chemical and physical data”, CRC Press, Boca Raton, Fla., 85th ed., 2004Google Scholar
  7. 7.
    Wunderlich, B., “Macromolecular physics”, Academic Press, New York, 1973Google Scholar
  8. 8.
    Lovinger, A.J., Science, 1983, 220(4602): 1115CrossRefGoogle Scholar
  9. 9.
    Li, C.Y., Cheng, S.Z.D., Weng, X., Ge, J.J., Bai, F., Zhang, J.Z., Calhoun, B.H., Harris, F.W., Chien, L.C. and Lotz, B., J. Am. Chem. Soc., 2001, 123(10): 2462CrossRefGoogle Scholar
  10. 10.
    Wang, J., Li, C.Y., Jin, S., Weng, X., Van Horn, R.M., Graham, M., Zhang, W.B., Jeong, K.U., Harris, F.W., Lotz, B. and Cheng, S.Z.D., Ind. Eng. Chem. Res., 2010, 49(23): 11936CrossRefGoogle Scholar
  11. 11.
    Desiraju, G.R., J. Mol. Struct., 2003, 656(1–3): 5CrossRefGoogle Scholar
  12. 12.
    Desiraju, G.R., “Crystal engineering: the design of organic solids”, Elsevier, Amsterdam, New York, 1989Google Scholar
  13. 13.
    Desiraju, G.R., Chem. Commun., 1997, 16: 1475CrossRefGoogle Scholar
  14. 14.
    Desiraju, G.R., Angew. Chem. Int. Ed., 1995, 34(21): 2311CrossRefGoogle Scholar
  15. 15.
    Corey, E.J. and Cheng, X.M., “The logic of chemical synthesis”, Wiley, New York, 1989Google Scholar
  16. 16.
    Degennes, P.G., Angew. Chem. Int. Ed., 1992, 31(7): 842CrossRefGoogle Scholar
  17. 17.
    Hamley, I.W., “Introduction to soft matter: polymers, colloids, amphiphiles and liquid crystals”, Wiley, Chichester, Eng., New York, 2000Google Scholar
  18. 18.
    Lehn, J.M., Angew. Chem. Int. Ed., 1988, 27(1): 89CrossRefGoogle Scholar
  19. 19.
    Lehn, J.M., Angew. Chem. Int. Ed., 2013, 52(10): 2836CrossRefGoogle Scholar
  20. 20.
    Palma, C.A., Cecchini, M. and Samori, P., Chem. Soc. Rev., 2012, 41(10): 3713CrossRefGoogle Scholar
  21. 21.
    Arnold, F.H., Acc. Chem. Res., 1998, 31(3): 125CrossRefGoogle Scholar
  22. 22.
    Cesareni, G., “Modular protein domains”, Wiley-VCH, Weinheim, 2005CrossRefGoogle Scholar
  23. 23.
    Corey, E.J., Pure Appl. Chem., 1967, 14(1): 19CrossRefGoogle Scholar
  24. 24.
    Zhang, W.B., “Soft fullerene materials: from click chemistry to supramolecular assemblies”, Ph. D. Dissertation, University of Akron, 2010Google Scholar
  25. 25.
    Prigogine, I. and Stengers, I., “The end of certainty: time, chaos, and the new laws of nature”, Free Press, New York, 1st Free Press ed., 1997Google Scholar
  26. 26.
    Kolb, H.C., Finn, M.G. and Sharpless, K.B., Angew. Chem. Int. Ed., 2001, 40(11): 2004CrossRefGoogle Scholar
  27. 27.
    Sumerlin, B.S. and Vogt, A.P., Macromolecules, 2010, 43(1): 1CrossRefGoogle Scholar
  28. 28.
    Iha, R.K., Wooley, K.L., Nystrom, A.M., Burke, D.J., Kade, M.J. and Hawker, C.J., Chem. Rev., 2009, 109(11): 5620CrossRefGoogle Scholar
  29. 29.
    Autumn, K., Sitti, M., Liang, Y.C.A., Peattie, A.M., Hansen, W.R., Sponberg, S., Kenny, T.W., Fearing, R., Israelachvili, J.N. and Full, R.J., Proc. Natl. Acad. Sci., USA, 2002, 99(19): 12252CrossRefGoogle Scholar
  30. 30.
    Lehn, J.M., Polym. Int., 2002, 51(10): 825CrossRefGoogle Scholar
  31. 31.
    Brunsveld, L., Folmer, B.J.B., Meijer, E.W. and Sijbesma, R.P., Chem. Rev., 2001, 101(12): 4071CrossRefGoogle Scholar
  32. 32.
    Metrangolo, P., Neukirch, H., Pilati, T. and Resnati, G., Acc. Chem. Res., 2005, 38(5): 386CrossRefGoogle Scholar
  33. 33.
    Leininger, S., Olenyuk, B. and Stang, P.J., Chem. Rev., 2000, 100(3): 853CrossRefGoogle Scholar
  34. 34.
    Sato, S., Iida, J., Suzuki, K., Kawano, M., Ozeki, T. and Fujita, M., Science, 2006, 313(5791): 1273CrossRefGoogle Scholar
  35. 35.
    Newkome, G.R., Cho, T.J., Moorefield, C.N., Cush, R., Russo, P.S., Godinez, L.A., Saunders, M.J. and Mohapatra, P., Chem. Eur. J., 2002, 8(13): 2946CrossRefGoogle Scholar
  36. 36.
    Moulton, B. and Zaworotko, M.J., Chem. Rev., 2001, 101(6): 1629CrossRefGoogle Scholar
  37. 37.
    Furukawa, H., Cordova, K.E., O’Keeffe, M. and Yaghi, O.M., Science, 2013, 341(6149): 1230444CrossRefGoogle Scholar
  38. 38.
    Steed, J.W. and Atwood, J.L., “Supramolecular chemistry”, Wiley, Chichester; New York, 2000Google Scholar
  39. 39.
    Hunter, C.A. and Sanders, J.K.M., J. Am. Chem. Soc., 1990, 112(14): 5525CrossRefGoogle Scholar
  40. 40.
    Williams, J.H., Acc. Chem. Res., 1993, 26(11): 593CrossRefGoogle Scholar
  41. 41.
    Ren, X., Sun, B., Tsai, C.C., Tu, Y., Leng, S., Li, K., Kang, Z., Van Horn, R.M., Li, X., Zhu, M., Wesdemiotis, C., Zhang, W.B. and Cheng, S.Z.D., J. Phys. Chem. B, 2010, 114(14): 4802CrossRefGoogle Scholar
  42. 42.
    Zang, L., Che, Y.K. and Moore, J.S., Acc. Chem. Res., 2008, 41(12): 1596CrossRefGoogle Scholar
  43. 43.
    Bates, F.S. and Fredrickson, G.H., Annu. Rev. Phys. Chem., 1990, 41: 525CrossRefGoogle Scholar
  44. 44.
    Wang, Y., Wang, Y., Breed, D.R., Manoharan, V.N., Feng, L., Hollingsworth, A.D., Weck, M. and Pine, D.J., Nature, 2012, 491(7422): 51CrossRefGoogle Scholar
  45. 45.
    Li, F., Josephson, D.P. and Stein, A., Angew. Chem. Int. Ed., 2011, 50(2): 360CrossRefGoogle Scholar
  46. 46.
    Yu, X., Yue, K., Hsieh, I.F., Li, Y., Dong, X.H., Liu, C., Xin, Y., Wang, H.F., Shi, A.C., Newkome, G.R., Ho, R.M., Chen, E.Q., Zhang, W.B. and Cheng, S.Z.D., Proc. Natl. Acad. Sci., USA, 2013, 110(25): 10078CrossRefGoogle Scholar
  47. 47.
    Yu, X., Li, Y., Dong, X.H., Yue, K., Lin, Z., Feng, X., Huang, M., Zhang, W.B. and Cheng, S.Z.D., J. Polym. Sci., Part B: Polym. Phys., 2014, 52(20): 1309CrossRefGoogle Scholar
  48. 48.
    Zhang, W.B., Yu, X., Wang, C.L., Sun, H.J., Hsieh, I.F., Li, Y., Dong, X.H., Yue, K., Van Horn, R. and Cheng, S.Z.D., Macromolecules, 2014, 47(4): 1221CrossRefGoogle Scholar
  49. 49.
    Schmelzer, J., Z. Phys. Chem., 1998, 204(1–2): 171CrossRefGoogle Scholar
  50. 50.
    Ostwald, W., Z. Phys. Chem., 1897, 22: 289Google Scholar
  51. 51.
    Wang, Y., Lin, H.X., Ding, S.Y., Liu, D.Y., Chen, L., Lei, Z.C., Fan, F.R. and Tian, Z.Q., Sci. Chin. Chem., 2012, 42(4): 525Google Scholar
  52. 52.
    Wang, Y., Lin, H.X., Chen, L., Ding, S.Y., Lei, Z.C., Liu, D.Y., Cao, X.Y., Liang, H.J., Jiang, Y.B. and Tian, Z.Q., Chem. Soc. Rev., 2014, 43(1): 399CrossRefGoogle Scholar
  53. 53.
    Roy, X., Lee, C.H., Crowther, A.C., Schenck, C.L., Besara, T., Lalancette, R.A., Siegrist, T., Stephens, P.W., Brus, L.E., Kim, P., Steigerwald, M.L. and Nuckolls, C., Science, 2013, 341(6142): 157CrossRefGoogle Scholar
  54. 54.
    Tomalia, D.A., Christensen, J.B. and Boas, U., “Dendrimers, dendrons, and dendritic polymers: discovery, application, and the future”, Cambridge University Press, Cambridge, UK, 2012CrossRefGoogle Scholar
  55. 55.
    Tomalia, D.A. and Jensen, A., “Periodic patterns, relationships and categories of well-defined nanoscale building blocks”, National Science Foundation Workshop Report, 2007Google Scholar
  56. 56.
    Bishop, K.J.M., Wilmer, C.E., Soh, S. and Grzybowski, B.A., Small, 2009, 5(14): 1600CrossRefGoogle Scholar
  57. 57.
    Metrangolo, P. and Resnati, G., Chem. Eur. J., 2001, 7(12): 2511CrossRefGoogle Scholar
  58. 58.
    Yoder, C.H., J. Chem. Edu., 1977, 54(7): 402CrossRefGoogle Scholar
  59. 59.
    Ma, J.C. and Dougherty, D.A., Chem. Rev., 1997, 97(5): 1303CrossRefGoogle Scholar
  60. 60.
    Schubert, U., Hofmeier, H. and Newkome, G.R., “Modern terpyridine chemistry”, Wiley-VCH, Weinheim, 2006CrossRefGoogle Scholar
  61. 61.
    Wang, C.L., Zhang, W.B., Sun, H.J., Van Horn, R.M., Kulkarni, R.R., Tsai, C.C., Hsu, C.S., Lotz, B., Gong, X. and Cheng, S.Z.D., Adv. Energy Mater., 2012, 2(11): 1375CrossRefGoogle Scholar
  62. 62.
    Wang, C.L., Zhang, W.B., Hsu, C.H., Sun, H.J., Van Horn, R.M., Tu, Y., Anokhin, D.V., Ivanov, D.A. and Cheng, S.Z.D., Soft Matt., 2011, 7(13): 6135CrossRefGoogle Scholar
  63. 63.
    Wang, C.L., Zhang, W.B., Van Horn, R.M., Tu, Y., Gong, X., Cheng, S.Z.D., Sun, Y., Tong, M., Seo, J., Hsu, B.B. and Heeger, A.J., Adv. Mater., 2011, 23(26): 2951CrossRefGoogle Scholar
  64. 64.
    Glotzer, S.C., Horsch, M.A., Iacovella, C.R., Zhang, Z., Chan, E.R. and Zhang, X., Curr. Opin. Colloid Interface Sci., 2005, 10(5–6): 287CrossRefGoogle Scholar
  65. 65.
    Macfarlane, R.J., Lee, B., Jones, M.R., Harris, N., Schatz, G.C. and Mirkin, C.A., Science, 2011, 334(6053): 204CrossRefGoogle Scholar
  66. 66.
    Auyeung, E., Li, T.I., Senesi, A.J., Schmucker, A.L., Pals, B.C., de la Cruz, M.O. and Mirkin, C.A., Nature, 2014, 505(7481): 73CrossRefGoogle Scholar
  67. 67.
    Nykypanchuk, D., Maye, M.M., van der Lelie, D. and Gang, O., Nature, 2008, 451(7178): 549CrossRefGoogle Scholar
  68. 68.
    Xiong, H., Sfeir, M.Y. and Gang, O., Nano Lett., 2010, 10(11): 4456CrossRefGoogle Scholar
  69. 69.
    Cambridge Structural Database,, Accessed March 10, 2015
  70. 70.
    Protein Data Bank,, Accessed March 10, 2015
  71. 71.
    “Materials genome initiative for global competitiveness”, National Science and Technology Council, Washington, D.C., 2011Google Scholar
  72. 72.
    Kuhn, T.S., “The structure of scientific revolutions”, University of Chicago Press, Chicago, IL, 3rd edn., 1996CrossRefGoogle Scholar
  73. 73.
    Zheng, J.X., Xiong, H., Chen, W.Y., Lee, K., Van Horn, R.M., Quirk, R.P., Lotz, B., Thomas, E.L., Shi, A.C. and Cheng, S.Z.D., Macromolecules, 2006, 39(2): 641CrossRefGoogle Scholar
  74. 74.
    Xiong, H., Zheng, J.X., Van Horn, R.M., Jeong, K.U., Quirk, R.P., Lotz, B., Thomas, E.L., Brittain, W.J. and Cheng, S.Z.D., Polymer, 2007, 48(13): 3732CrossRefGoogle Scholar
  75. 75.
    Wang, H., Keum, J.K., Hiltner, A., Baer, E., Freeman, B., Rozanski, A. and Galeski, A., Science, 2009, 323(5915): 757CrossRefGoogle Scholar
  76. 76.
    Kadish, K.M. and Ruoff, R.S., “Fullerenes: chemistry, physics, and technology”, Wiley-Interscience, New York, 2000Google Scholar
  77. 77.
    Martin, N. and Giacalone, F., “Fullerene polymers: synthesis, properties and applications”, Wiley-VCH, Weinheim, 2009CrossRefGoogle Scholar
  78. 78.
    Hirsch, A. and Brettreich, M., “Fullerenes: chemistry and reactions”, Wiley-VCH, Weinheim, Great Britain, 2005CrossRefGoogle Scholar
  79. 79.
    Zhang, W.B., Tu, Y., Ranjan, R., Van Horn, R.M., Leng, S., Wang, J., Polce, M., Wesdemiotis, C., Quirk, R.P., Newkome, G.R. and Cheng, S.Z.D., Macromolecules, 2008, 41(3): 515CrossRefGoogle Scholar
  80. 80.
    Dong, X.H., Zhang, W.B., Li, Y., Huang, M., Zhang, S., Quirk, R.P. and Cheng, S.Z.D., Polym. Chem., 2012, 3(1): 124CrossRefGoogle Scholar
  81. 81.
    Dong, X.H., Van Horn, R., Chen, Z., Ni, B., Yu, X., Wurm, A., Schick, C., Lotz, B., Zhang, W.B. and Cheng, S.Z.D., J. Phys. Chem. Lett., 2013, 4(14): 2356CrossRefGoogle Scholar
  82. 82.
    Cordes, D.B., Lickiss, P.D. and Rataboul, F., Chem. Rev., 2010, 110(4): 2081CrossRefGoogle Scholar
  83. 83.
    Pielichowski, K., Njuguna, J., Janowski, B. and Pielichowski, J., Adv. Polym. Sci., 2006, 201(1): 225CrossRefGoogle Scholar
  84. 84.
    Roll, M.F., Asuncion, M.Z., Kampf, J. and Laine, R.M., ACS Nano, 2008, 2(2): 320CrossRefGoogle Scholar
  85. 85.
    Tanaka, K. and Chujo, Y., J. Mater. Chem., 2012, 22(5): 1733CrossRefGoogle Scholar
  86. 86.
    Kuo, S.W. and Chang, F.C., Prog. Polym. Sci., 2011, 36(12): 1649CrossRefGoogle Scholar
  87. 87.
    Sun, H.J., Tu, Y., Wang, C.L., Van Horn, R.M., Tsai, C.C., Graham, M.J., Sun, B., Lotz, B., Zhang, W.B. and Cheng, S.Z.D., J. Mater. Chem., 2011, 21(37): 14240CrossRefGoogle Scholar
  88. 88.
    Lin, Z., Lu, P., Hsu, C.H., Yue, K., Dong, X.H., Liu, H., Guo, K., Wesdemiotis, C., Zhang, W.B., Yu, X. and Cheng, S.Z.D., Chem. Eur. J., 2014, 20(37): 11630CrossRefGoogle Scholar
  89. 89.
    Lin, M.C., Hsu, C.H., Sun, H.J., Wang, C.L., Zhang, W.B., Li, Y., Chen, H.L. and Cheng, S.Z.D., Polymer, 2014, 55(17): 4514CrossRefGoogle Scholar
  90. 90.
    Li, H., Babu, S.S., Turner, S.T., Neher, D., Hollamby, M.J., Seki, T., Yagai, S., Deguchi, Y., Möhwald, H. and Nakanishi, T., J. Mater. Chem. C, 2013, 1(10): 1943CrossRefGoogle Scholar
  91. 91.
    Chu, C.C., Raffy, G., Debdas, R., Guerzo, A.D., Kauffmann, B., Wantz, G., Hirsch, L. and Bassani, D.M., J. Am. Chem. Soc., 2010, 132(36): 12717CrossRefGoogle Scholar
  92. 92.
    Cravino, A. and Sariciftci, N.S., Nat. Mater., 2003, 2(6): 360CrossRefGoogle Scholar
  93. 93.
    Cravino, A., Polym. Int., 2007, 56(8): 943CrossRefGoogle Scholar
  94. 94.
    Wang, C.L., Zhang, W.B., Yu, X., Yue, K., Sun, H.J., Hsu, C.H., Hsu, C.S., Joseph, J., Modarelli, D.A. and Cheng, S.Z.D., Chem. Asian J., 2013, 8(5): 947CrossRefGoogle Scholar
  95. 95.
    Bandic, Z.Z., Litvinov, D. and Rooks, M., MRS Bull., 2008, 33(9): 831CrossRefGoogle Scholar
  96. 96.
    Lu, W. and Lieber, C.M., Nat. Mater., 2007, 6: 841CrossRefGoogle Scholar
  97. 97.
    Zheng, F., Barke, I., Liu, X.S. and Himpsel, F.J., Nanotechnology, 2008, 19(44): 445303CrossRefGoogle Scholar
  98. 98.
    Li, Y., Zhang, W.B., Hsieh, I.F., Zhang, G., Cao, Y., Li, X., Wesdemiotis, C., Lotz, B., Xiong, H. and Cheng, S.Z.D., J. Am. Chem. Soc., 2011, 133(28): 10712CrossRefGoogle Scholar
  99. 99.
    Liu, H., Hsu, C.H., Lin, Z., Shan, W., Wang, J., Jiang, J., Huang, M., Lotz, B., Yu, X., Zhang, W.B., Yue, K. and Cheng, S.Z.D., J. Am. Chem. Soc., 2014, 136(30): 10691CrossRefGoogle Scholar
  100. 100.
    Confucius and Li, D.H., “The analects of confucius: a new-millennium translation”, Premier Pub., Bethesda, MD, 1999Google Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Wen-Bin Zhang (张文彬)
    • 1
  • Stephen Z. D. Cheng (程正迪)
    • 2
  1. 1.Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.Department of Polymer Science, College of Polymer Science and Polymer EngineeringThe University of AkronAkronUSA

Personalised recommendations