Chinese Journal of Polymer Science

, Volume 33, Issue 4, pp 523–539 | Cite as

A modern approach to the solution and analysis of the Simha-Somcynsky model for the description of pressure-volume-temperature properties of polymer fluids



We revisit the Simha-Somcynsky model of polymer fluids with the purpose of developing novel theoretical and computational approaches to simplify and speed up its solution as well as the fitting of experimental data, and decrease its level of mathematical complexity. We report a novel method that allows us to solve one of the two equations of the model exactly, thus putting the level of mathematical difficulty on a par with the one of other models for polymer fluids. Moreover, we describe a computational algorithm capable of fitting all five parameters of the model in an unbiased way. The results obtained reproduce literature results and fit experimental pressure-volume-temperature and solubility parameter data for three polymers very accurately. Moreover, the new techniques allow for the investigation of the model at very low temperatures. Unexpectedly, the model predicts behaviors that could be interpreted as a glass transition, as routinely observed in dilatometry and differential scanning calorimetry, and a glass phase. We compared the predicted and experimental T g’s for cis poly(1,4-butadiene) and found an excellent quantitative agreement.


Simha-Somcynsky model PVT properties Polymer fluids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hess, M., Macromol. Symp., 2004, 214: 361CrossRefGoogle Scholar
  2. 2.
    Berry, J.M., Brostow, W.M., Hess, M. and Jacobs, E.G., Polymer, 1998, 39: 4081CrossRefGoogle Scholar
  3. 3.
    Wang, J., “PVT Properties of Polymers for Injection Molding, Some Critical Issues for Injection Molding”, Dr. Jian Wang (ed.), InTech, Rijeka, Croatia, 2012Google Scholar
  4. 4.
    U.S. Department of Energy, Office of Fossil Energy, and Natural Energy Technology Laboratory. “State Oil and Natural Gas Regulations Designed to Protect Water Resources”. May 2009, p. 21Google Scholar
  5. 5.
    U.S. Environmental Protection Agency. Office of Research and Development. “Hydraulic Fracturing Research Study”. June 29th, 2011. Google Scholar
  6. 6.
    Kaufman, P., Penny, G.S., Penny, J., “Critical Evaluation of Additives Used in Shale Slickwater Fractures” November 2008, Society of Petroleum Engineers. Paper SPE 119900, 1–9Google Scholar
  7. 7.
    U.S. Department of Energy, Office of Fossil Energy, and Ground Water Protection Council, “Modern Shale Gas Development in the United States: A Premier”, 2009Google Scholar
  8. 8.
    Begos, K, USA Today, “Four states confirm water pollution from drilling”, January 5th, 2014 Google Scholar
  9. 9.
    Osborn, S.G., Vengosh, A., Warner, N.R. and Jackson, R.B., PNAS, 2011, 108: 8172CrossRefGoogle Scholar
  10. 10.
    Flory, P.J., Orwoll, R.A. and Vrij, A., J. Am. Chem. Soc., 1964, 86: 3507CrossRefGoogle Scholar
  11. 11.
    Simha, R. and Somcynsky, T., Macromolecules, 1969, 2: 342CrossRefGoogle Scholar
  12. 12.
    Simha, R., Macromolecules, 1977, 10: 1025CrossRefGoogle Scholar
  13. 13.
    Sanchez, I.C. and Lacombe, R.H., J. Phys. Chem., 1976, 80: 2452CrossRefGoogle Scholar
  14. 14.
    Sanchez, I.C. and Lacombe, R.H., J. Polym. Sci. Polym. Lett. Ed., 1977, 15: 71CrossRefGoogle Scholar
  15. 15.
    Hartmann, B. and Haque, M.A., J. Appl. Polym. Sci., 1985, 30: 1553CrossRefGoogle Scholar
  16. 16.
    Dee, G.T. and Walsh, D.J., Macromolecules, 1988, 21: 811CrossRefGoogle Scholar
  17. 17.
    Dee, G.T. and Walsh, D.J., Macromolecules, 1988, 21: 815CrossRefGoogle Scholar
  18. 18.
    Nies, E. and Stroeks, A., Macromolecules, 1990, 23: 4088CrossRefGoogle Scholar
  19. 19.
    Rodgers, P.A., J. Appl. Polym. Sci., 1993, 48: 1061CrossRefGoogle Scholar
  20. 20.
    Sato, Y., Hashiguchi, H., Takishima, S. and Masuoka, H., Fluid Phase Equilib., 1998, 144: 427CrossRefGoogle Scholar
  21. 21.
    Olabisi, O. and Simha, R., Macromolecules, 1975, 8: 211CrossRefGoogle Scholar
  22. 22.
    Zoller, P., J. Polym. Sci. Polym. Phys. Ed., 1982, 20: 1453CrossRefGoogle Scholar
  23. 23.
    Zoller, P., Kehl, T.A., Starkweather, H.W. and Jones, G.A., J. Polym. Sci., Part B Polym. Phys., 1989, 27: 993CrossRefGoogle Scholar
  24. 24.
    Simha, R., and Wilson, P.S., Macromolecules, 1973, 6: 908CrossRefGoogle Scholar
  25. 25.
    Prigogine, I., “The Molecular Theory of Solutions”, North-Holland Publishing Company, Amsterdam, 1957, Chapters VII and VIIIGoogle Scholar
  26. 26.
    Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., “The Molecular Theory of Gases and Liquids”, Wiley, New York, 1954Google Scholar
  27. 27.
    De Boer, J., Proc. Roy. Soc. A, 1952, 215: 1CrossRefGoogle Scholar
  28. 28.
    Green, H.S., “The Molecular Theory of Liquids”, North-Holland Publishing Company, Amsterdam, 1952Google Scholar
  29. 29.
    Janssens, P., and Prigogine, I., Physica, 1950, 16: 895CrossRefGoogle Scholar
  30. 30.
    Pople, J.A., Phil. Mag., 1951, 41: 459CrossRefGoogle Scholar
  31. 31.
    Englert-Chwoles, A., J. Chem. Phys., 1951, 20: 925CrossRefGoogle Scholar
  32. 32.
    Cernuschi, F. and Eyring, J., J. Chem. Phys., 1939, 7: 547CrossRefGoogle Scholar
  33. 33.
    Peek, H.M. and Hill, T.L., J. Chem. Phys., 1950, 18: 1252CrossRefGoogle Scholar
  34. 34.
    Mayer, J.E. and Careri, G., J. Chem. Phys., 1952, 20: 1001CrossRefGoogle Scholar
  35. 35.
    Henderson, D., J. Chem. Phys., 1962, 37: 631CrossRefGoogle Scholar
  36. 36.
    Flory, P.J., “Principles of Polymer Chemistry”, Cornell University Press, Ithaca, NY, 1953, Chapter IIIGoogle Scholar
  37. 37.
    Simha, R. and Wilson, P.S., Macromolecules, 1973, 6: 908CrossRefGoogle Scholar
  38. 38.
    Burden, R.L., and Faires, J.D., “Numerical Analysis (8th ed.), Thomson Brooks/Cole, Belmont, California, 2005Google Scholar
  39. 39.
    Brent, H., “Algorithms for minimization without derivatives” Prentice-Hall, Eaglewood Cliffs, New Jersey, 1973Google Scholar
  40. 40.
    Corsi, A. and Gujrati, P.D., Phys. Rev. E, 2003, 68: 031502CrossRefGoogle Scholar
  41. 41.
    Semerianov, F. and Gujrati, P.D., Phys. Rev. E, 2005, 72: 011102CrossRefGoogle Scholar
  42. 42.
    Corsi, A. and Gujrati, P.D., Phys. Rev. Lett., 2001, 87: 025701CrossRefGoogle Scholar
  43. 43.
    Dudowicz, J., Freed, K.F. and Douglas, J.F., J. Chem. Phys., 2006, 124: 064901CrossRefGoogle Scholar
  44. 44.
    Consolati, G., Quazzo, F., Simha, R. and Olson, B.G., J. Polym. Sci., Part B: Polym. Phys., 2005, 43: 2225CrossRefGoogle Scholar
  45. 45.
    Batchinski, A.J., Z. Phys. Chem., 1913, 84: 643Google Scholar
  46. 46.
    Hildebrand, J. H., and Lamoreaux, R.H., Proc. Natl. Acad. Sci. U.S.A., 1976, 73: 988CrossRefGoogle Scholar
  47. 47.
    Doolittle, A.K., J. Appl. Phys., 1951, 22: 1471CrossRefGoogle Scholar
  48. 48.
    Doolittle, A.K., J. Appl. Phys., 1952, 23: 236CrossRefGoogle Scholar
  49. 49.
    Cohen, M.H. and Turnbull, D., J. Chem. Phys., 1959, 31: 1164CrossRefGoogle Scholar
  50. 50.
    Cohen, M.H., and Grest, G.S., Phys. Rev. B, 1979, 20: 1077CrossRefGoogle Scholar
  51. 51.
    Walsh, D.J. and Zoller, P., “Standard Pressure Volume Temperature Data for Polymers” Technomic Publishing Co., Inc., Lancaster, Pennsylvania, 1995Google Scholar
  52. 52.
    Barton, A.F.M., “CRC Handbook of Polymer-Liquid Interaction Parameters and Solubility Paramters” CRC Press, Boca Raton, Florida, 1990Google Scholar
  53. 53.
    Utracki, L.A. and Simha, R., Polym. Int., 2004, 53: 279CrossRefGoogle Scholar
  54. 54.
    Utracki, L.A., J. Polym. Sci., Part B: Polym. Phys., 2004, 42: 2909CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Polymer Science, College of Polymer Science and Polymer EngineeringThe University of AkronAkronUSA

Personalised recommendations