Advertisement

Chinese Journal of Polymer Science

, Volume 32, Issue 10, pp 1329–1337 | Cite as

Cisplatin-loaded polymer/magnetite composite nanoparticles as multifunctional therapeutic nanomedicine

  • Yan Zhang
  • Xiao-ju Wang
  • Miao Guo
  • Hu-sheng Yan (阎虎生)
  • Chen-hong Wang
  • Ke-liang Liu (刘克良)
Papers

Abstract

Multifunctional nanocarriers with multilayer core-shell architecture were prepared by coating superparamagnetic Fe3O4 nanoparticles with diblock copolymer folate-poly(ethylene glycol)-b-poly(glycerol monomethacrylate) (FA-PEG-b-PGMA), and triblock copolymer methoxy poly(ethylene glycol)-b-poly(2-(dimethylamino) ethyl methacrylate)-b-poly(glycerol monomethacrylate) (MPEG-b-PDMA-b-PGMA). The PGMA segment was attached to the surfaces of Fe3O4 nanoparticles, and the outer PEG shell imparted biocompatibility. In addition, folate was conjugated onto the surfaces of the nanocarriers. Cisplatin was then loaded into the nanocarrier by coordination between the Pt atom in cisplatin and the amine groups in the inner shell of the multilayer architecture. The loaded cisplatin showed pH-responsive release: slower release at pH 7.4 (i.e. mimicking the blood environment) and faster release at more acidic pH (i.e. mimicking endosome/lysosome conditions). All of the cisplatin-loaded nanoparticles showed concentration-dependent cytotoxicity in HeLa cells. However, the folate-conjugated cisplatin-loaded carriers exhibited higher cytotoxicity in HeLa cells than non-folate conjugated cisplatin-loaded carriers.

Keywords

Drug delivery Folate Targeting Cisplatin Magnetic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lammers, T., Aime, S., Hennink, W.E., Storm, G. and Kiessling, F., Acc. Chem. Res., 2011, 44: 1029CrossRefGoogle Scholar
  2. 2.
    Yang, R., Meng, F.H., Ma, S.B., Huang, F.S., Liu, H.Y. and Zhong, Z.Y., Biomacromolecules, 2011, 12: 3047CrossRefGoogle Scholar
  3. 3.
    Kaaki, K., Herve-Aubert, K., Chiper, M., Shkilnyy, A., Souce, M., Benoit, R., Paillard, A., Dubois, P., Saboungi, M.L. and Chourpa, I., Langmuir, 2012, 28: 1496CrossRefGoogle Scholar
  4. 4.
    Zhang, Y., Wang, C., Xu, C., Yang, C., Zhang, Z., Yan, H. and Liu, K., Chem. Commun., 2013, 49: 7286CrossRefGoogle Scholar
  5. 5.
    Zhou, D.H., Zhang, J., Zhang, G. and Gan, Z.H., Chinese J. Polym. Sci., 2013, 31(9): 1299CrossRefGoogle Scholar
  6. 6.
    Xu, Z., Guo, M., Yan, H. and Liu, K., React. Funct. Polym., 2013, 73: 564CrossRefGoogle Scholar
  7. 7.
    Janib. S.M., Moses, A.S. and MacKay, J.A., Adv. Drug Deliv. Rev., 2010, 62: 1052CrossRefGoogle Scholar
  8. 8.
    Guo, M., Que, C., Wang, C., Liu, X., Yan, H. and Liu, K., Biomaterials, 2011, 32: 185CrossRefGoogle Scholar
  9. 9.
    Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander, L. and Muller, R., Chem., Rev., 2008, 108: 2064CrossRefGoogle Scholar
  10. 10.
    Jeong, U., Teng, X., Wang, Y., Yang, H. and Xia, Y., Adv. Mater., 2007, 19: 33CrossRefGoogle Scholar
  11. 11.
    Laurent, S., Dutz, S., Hafeli, U.O. and Mahmoudi, M., Adv. Colloid. Interf. Sci., 2011, 166: 8Google Scholar
  12. 12.
    Kumar, C.S.S.R. and Mohammad, F., Adv. Drug Deliv. Rev., 2011, 63: 789CrossRefGoogle Scholar
  13. 13.
    Boulikas, T. and Vougiouka, M., Oncol. Rep., 2004, 11: 559Google Scholar
  14. 14.
    Nishiyama, N. and Kataoka, K., J. Control. Release, 2001, 74: 83CrossRefGoogle Scholar
  15. 15.
    Bontha, S., Kabanov, A.V. and Bronich, T.K., J. Control. Release, 2006, 114: 163CrossRefGoogle Scholar
  16. 16.
    Rocca, J.D., Huxford, R.C., Comstock-Duggan, E. and Lin, W., Angew. Chem. Int. Ed., 2011, 50: 10330CrossRefGoogle Scholar
  17. 17.
    Xiong, Y., Jiang, W., Shen, Y., Li, H., Sun, C., Ouahab, A. and Tu, J., Biomaterials, 2012, 33: 7182CrossRefGoogle Scholar
  18. 18.
    Oberoi, H.S., Laquer, F.C., Marky, L.A., Kabanov, A.V. and Bronich, T.K., J. Control. Release, 2011, 153: 64CrossRefGoogle Scholar
  19. 19.
    Ye, L., Letchford, K., Heller, M., Liggins, R., Guan, D., Kizhakkedathu, J.N., Brooks, D.E., Jackson, J.K. and Burt, H.M., Biomacromolecules, 2011, 12: 145CrossRefGoogle Scholar
  20. 20.
    Song, W., Li, M., Tang, Z., Li, Q., Yang, Y., Liu, H., Duan, T., Hong, H. and Chen, X., Macromol. Biosci., 2012, 12: 1514CrossRefGoogle Scholar
  21. 21.
    Xing, R., Wang, X., Zhang, C., Wang, J., Zhang, Y., Song, Y. and Guo, Z., J. Mater. Chem., 2011, 21: 11142CrossRefGoogle Scholar
  22. 22.
    Thierry, B., Al-Ejeh, F., Khatri, A., Yuan, Z., Russell, P.J., Ping, S., Brownb, M.P. and Majewskia, P., Chem. Commun., 2009, 7348Google Scholar
  23. 23.
    Sonoda, A., Nitta, N., Nitta-Seko, A., Ohta, S., Takamatsu, S., Ikehata, Y., Nagano, I., Jo, J., Tabata, Y., Takahashi, M., Matsui, O. and Murata, K., Inter. J. Nanomed., 2010, 5: 499CrossRefGoogle Scholar
  24. 24.
    Likhitkar, S. and Bajpai, A.K., Carbohydrate Polym., 2012, 87: 300CrossRefGoogle Scholar
  25. 25.
    Haxton, K.J. and Burt, H.M., J. Pharm. Sci., 2009, 98: 2299CrossRefGoogle Scholar
  26. 26.
    Kapp, T., Dullin, A. and Gust, R., J. Med. Chem., 2006, 49: 1182CrossRefGoogle Scholar
  27. 27.
    Xu, P., Van Kirk, E.A., Murdoch, W.J., Zhan, Y., Isaak, D.D., Radosz, M. and Shen, Y., Biomacromolecules, 2006, 7: 829CrossRefGoogle Scholar
  28. 28.
    Zhen, Y., Wan, S., Liu, Y., Yan, H.S., Shi, R. and Wang, C., Macromol. Chem. Phys., 2005, 206: 607CrossRefGoogle Scholar
  29. 29.
    Wan, S., Zheng, Y., Liu, Y., Yan, H.S. and Liu, K.L., J. Mater. Chem., 2005, 15: 3424CrossRefGoogle Scholar
  30. 30.
    Golla, E.D. and Ayres, G.H., Talanta, 2010, 20: 199CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yan Zhang
    • 1
  • Xiao-ju Wang
    • 1
  • Miao Guo
    • 1
  • Hu-sheng Yan (阎虎生)
    • 1
  • Chen-hong Wang
    • 2
  • Ke-liang Liu (刘克良)
    • 2
  1. 1.Key Laboratory of Functional Polymer Materials (Ministry of Education) and Institute of Polymer ChemistryNankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina
  2. 2.Beijing Institute of Pharmacology and ToxicologyBeijingChina

Personalised recommendations