Advertisement

Chinese Journal of Polymer Science

, Volume 31, Issue 9, pp 1204–1217 | Cite as

Some key ordered macroporous composites

  • Jian-hua Rong
  • Li-jun Ji
  • Zhen-zhong Yang (杨振忠)
Review

Abstract

This review summarizes recent progress of the ordered macroporous composites with the opals and inverse opal structure. Synthesis and performance of the composites are emphasized. Composition of the ordered composites is tunable ranging within metal, metal alloy, metal oxide, polymer, carbon and hydrogel. The ordered structure gives brilliant color effects, which is useful for sensors and photonic crystals. The interconnected macroporous structure provides easiness for mass transportation and species culturing.

Keywords

Opal Inverse opal Ordered macroporous Composites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Joannopoulos, J.D., Meade, R.D. and Winn, J.N., “Photonic crystals: molding the flow of light, 2nd Ed.”, Princeton University Press, New Jersey, 2008, p. 94Google Scholar
  2. 2.
    Mazurenko, D.A., Kerst, R., Dijkhuis, J.I., Akimov, A.V., Golubev, V.G. and Kurdyukov, D.A., Phy. Rev. Lett., 2003, 91: 213903CrossRefGoogle Scholar
  3. 3.
    Nair, R.V. and Vijaya, R., Prog. Quant. Electron., 2010, 34: 89CrossRefGoogle Scholar
  4. 4.
    Li, F., Josephson, D.P. and Stein, A., Angew. Chem. Int. Ed., 2011, 50: 360CrossRefGoogle Scholar
  5. 5.
    Zhang, J., Sun, Z. and Yang, B., Curr. Opin. Colloid. Interf. Sci., 2009, 14: 103CrossRefGoogle Scholar
  6. 6.
    Li, Z., Wang, J. and Song, Y., Particuology, 2011, 9: 559CrossRefGoogle Scholar
  7. 7.
    Shin, J., Han, S.G. and Lee, W., Anal. Chim. Acta., 2012, 752: 87CrossRefGoogle Scholar
  8. 8.
    Stein, A., Li, F. and Denny, N.R., Chem. Mater., 2008, 20: 649CrossRefGoogle Scholar
  9. 9.
    Lytle, J.C. and Stein, A., “Recent progress in syntheses and applications of inverse opals and related macroporous materials prepared by colloidal crystal templating. annual reviews of nano research”, ed. by Cao G. and Brinker. C.J., Vol. 1. World Scientific Publishing Co., Singapore China, 2006, p. 6Google Scholar
  10. 10.
    Marlow, F., Muldarisnur, Sharifi, P., Brinkmann, R. and Mendive, C., Angew. Chem. Int. Ed., 2009, 48: 6212CrossRefGoogle Scholar
  11. 11.
    Iler, R.K., Nature, 1965, 207: 472CrossRefGoogle Scholar
  12. 12.
    Davis, K.E., Russel, W.B. and Glantschnig, W.J., J. Chem. Soc., Faraday Trans., 1991, 87: 411CrossRefGoogle Scholar
  13. 13.
    Rogach, A.L., Kotov, N.A., Koktysh, D.S., Ostrander, J.W. and Ragoisha, G.A., Chem. Mater., 2000, 12: 2721CrossRefGoogle Scholar
  14. 14.
    Chen, L.H., Li, X.Y., Rooke, J.C., Zhang, Y.H., Yang, X.Y., Tang, Y., Xiao, F.S. and Su, B.L., J. Mater. Chem., 2012, 22: 17381CrossRefGoogle Scholar
  15. 15.
    Jiang, P. and McFarland, J., J. Am. Chem. Soc., 2004, 126: 13778CrossRefGoogle Scholar
  16. 16.
    Mller, M., Zentel, R., Maka, T., Romanov, S.G. and Torres, C.M.S., Adv. Mater., 2000, 12: 1499CrossRefGoogle Scholar
  17. 17.
    Yan, Q., Zhou, Z. and Zhao, X.S., Langmuir, 2005, 21: 3158CrossRefGoogle Scholar
  18. 18.
    Prevo, B.G. and Velev, O.D., Langmuir, 2004, 20: 2099CrossRefGoogle Scholar
  19. 19.
    Yang, H.T. and Jiang, P., Langmuir, 2010, 26: 13173CrossRefGoogle Scholar
  20. 20.
    Li, H.L., Dong, W.T., Bongard, H.J. and Marlow, F., J. Phys. Chem. B., 2005, 109: 9939CrossRefGoogle Scholar
  21. 21.
    Ye, R., Ye, Y.H., Zhou, Z.T. and Xu, H.H., Langmuir, 2013, 29: 1796CrossRefGoogle Scholar
  22. 22.
    Sun, J., Tang, C.J., Zhan, P., Han, Z.L., Cao, Z.S. and Wang, Z.L., Langmuir, 2010, 26: 7859CrossRefGoogle Scholar
  23. 23.
    Park, S.H. and Xia, Y.N., Adv. Mater., 1998, 10: 1045CrossRefGoogle Scholar
  24. 24.
    Li, Y.Z., Kunitake, T. and Fujikawa, S., Colloids and Surfaces A: Phys., 2006, 275: 209CrossRefGoogle Scholar
  25. 25.
    Cui, L.Y., Zhang, Y.Z., Wang, J.X., Ren, Y.B., Song, Y.L. and Jiang, L., Macromol. Rapid Commun., 2009, 30: 598CrossRefGoogle Scholar
  26. 26.
    Cui, L., Li, Y., Wang, J., Tian, E., Zhang, X., Zhang, Y., Song, Y. and Jiang, L., J. Mater. Chem., 2009, 19: 5499Google Scholar
  27. 27.
    Park, J. and Moon, J., Langmuir, 2006, 22: 3506CrossRefGoogle Scholar
  28. 28.
    Retsch, M., Zhou, Z.C., Rivera, S., Kappl, M., Zhao, X.S., Jonas, U. and Li, Q., Macromol. Chem. Phys., 2009, 210: 230CrossRefGoogle Scholar
  29. 29.
    Takeda, S. and Wiltzius, P., Chem. Mater., 2006, 18: 5643CrossRefGoogle Scholar
  30. 30.
    Dai, Z., Li, Y., Duan, G., Jia, L. and Cai, W., ACS Nano, 2012, 6: 6706CrossRefGoogle Scholar
  31. 31.
    Zhang, J.A., Wang, M.Z., Ge, X.W., Wu, M.Y., Wu, Q.Y. and Yang, J.J., J. Colloid Interface Sci., 2011, 353: 16CrossRefGoogle Scholar
  32. 32.
    Pileni, M.P., Acc. Chem. Res., 2012, 45: 1965CrossRefGoogle Scholar
  33. 33.
    Stöber, W., Fink, A. and Bohn, E., J. Colloid. Interf. Sci., 1968, 26: 62CrossRefGoogle Scholar
  34. 34.
    Johnson, N.P., McComb, D.W., Richel, A., Treble, B.M. and Rue, R.M., Synth. Met., 2001, 116: 469CrossRefGoogle Scholar
  35. 35.
    Holland, B.T., Blanford, C.F. and Stein, A., Science, 1998, 281: 538CrossRefGoogle Scholar
  36. 36.
    Braun, P.V. and Wiltzius, P., Nature, 1999, 402: 603CrossRefGoogle Scholar
  37. 37.
    Lumsdon, S.O., Kaler, E.W. and Velev, O.D., Langmuir, 2004, 20: 2108CrossRefGoogle Scholar
  38. 38.
    Ge, J.P., He, L., Goebl, J. and Yin, Y.D., J. Am. Chem. Soc., 2009, 131: 3484CrossRefGoogle Scholar
  39. 39.
    Xuan, R., Wu, Q., Yin, Y.D. and Ge, J.P., J. Mater. Chem., 2011, 21: 3672CrossRefGoogle Scholar
  40. 40.
    Vickreva, O., Kalinina, O. and Kumacheva, E., Adv. Mater., 2000, 12: 110CrossRefGoogle Scholar
  41. 41.
    Denkov, N.D., Velev, O.D., Kralchevsky, P.A.; Ivanov, I.B., Yoshimura, H. and Nagayama, K., Nature, 1993, 361: 26CrossRefGoogle Scholar
  42. 42.
    Ozin, G.A. and Yang, S.M., Adv. Funct. Mater. 2001, 11: 95CrossRefGoogle Scholar
  43. 43.
    Xia, Y.N., Yin, Y.D., Lu, Y. and McLellan, J., Adv. Funct. Mater., 2003, 13: 907CrossRefGoogle Scholar
  44. 44.
    Yin, Y.D., Lu, Y., Gates, B. and Xia, Y.N., J. Am. Chem. Soc., 2001, 123: 8718CrossRefGoogle Scholar
  45. 45.
    Jiang, P., Bertone, J.F., Hwang, K.S. and Colvin, V.L., Chem. Mater., 1999, 11: 2132CrossRefGoogle Scholar
  46. 46.
    Lange, B., Fleischhaker, F. and Zentel, R., Phys. Status Solidi. A, 2007, 204: 3618CrossRefGoogle Scholar
  47. 47.
    Wong, S., Kitaev, V. and Ozin, G.A., J. Am. Chem. Soc., 2003, 125: 15589CrossRefGoogle Scholar
  48. 48.
    Zheng, Z.Y., Liu, X.Z., Luo, Y.H., Cheng, B.Y., Zhang, D.Z. and Meng, Q.B., Appl. Phys. Lett., 2007, 90: 051910CrossRefGoogle Scholar
  49. 49.
    McLachlan, M.A., Johnson, N.P., Rue, R. and McComb, D.W., J. Mater. Chem., 2004, 14: 144CrossRefGoogle Scholar
  50. 50.
    Guo, W.H., Wang, M., Xia, W. and Dai, L.H., Opt. Commun., 2012, 285: 1259CrossRefGoogle Scholar
  51. 51.
    Cai, Z., Teng, J., Xia, D. and Zhao, X.S., J. Phys. Chem. C, 2011, 115: 9970CrossRefGoogle Scholar
  52. 52.
    Galusha, J.W., Tsung, C.K., Stucky, G.D. and Bartl, M.H., Chem. Mater., 2008, 20: 4925CrossRefGoogle Scholar
  53. 53.
    Rong, J.H., Ma, J. and Yang, Z.Z., Macrom. Rapid Commun., 2004, 25: 1786CrossRefGoogle Scholar
  54. 54.
    Ji, L.J., Rong, J.H. and Yang, Z.Z., Chem. Commun., 2003, (9):1080Google Scholar
  55. 55.
    Ji, L.J., Jell, G., Dong, Y., Jones, J.R. and Stevens, M., Chem. Commun., 2011, 47:9048CrossRefGoogle Scholar
  56. 56.
    Sen, T., Tiddy, G.J.T., Casci, J.L. and Anderson, M.W., Angew. Chem. Int. Ed., 2003, 42: 4649CrossRefGoogle Scholar
  57. 57.
    Subramanian, G., Manoharan, V.N., Thorne, J.D. and Pine, D.J., Adv. Mater., 1999, 11: 1261CrossRefGoogle Scholar
  58. 58.
    Velev, O.D., Tessier, P.M., Lenhoff, A.M. and Kaler, E.W., Nature, 1999, 401: 548CrossRefGoogle Scholar
  59. 59.
    Tessier, P., Velev, O.D., Kalambur, A.T., Lenhoff, A.M., Rabolt, J.F. and Kaler, E.W., Adv. Mater., 2001, 13: 396CrossRefGoogle Scholar
  60. 60.
    Vlasov, Y.A., Yao, N. and Norris, D.J., Adv. Mater., 1999, 11: 165CrossRefGoogle Scholar
  61. 61.
    Wang, D.Y., Salgueirino-Maceira, V., Liz-Marzan, L.W. and Caruso, F., Adv. Mater., 2002, 14: 908CrossRefGoogle Scholar
  62. 62.
    Zhang, W.Y., Lei, X.Y., Wang, Z.L., Zheng, D.G., Tam, W.Y., Chan, C.T. and Sheng, P., Phys. Rev. Lett., 2000, 84: 2853CrossRefGoogle Scholar
  63. 63.
    Yu, A.M., Meiser, F., Cassagneau, T. and Caruso, F., Nano Lett., 2004, 4: 177CrossRefGoogle Scholar
  64. 64.
    Moon, J.H. and Yang, S., Chem. Rev., 2010, 110: 547CrossRefGoogle Scholar
  65. 65.
    Yan, H.W., Blanford, C.F., Holland, B.T., Parent, M., Smyrl, W.H. and Stein, A., Adv. Mater., 1999, 11: 1003CrossRefGoogle Scholar
  66. 66.
    Zakhidov, A.A., Baughman, R.H., Iqbal, Z., Cui, C.X., Khayrullin, I. Dantas, S.O., Marti, J. and Ralchenko, V. G., Science, 1998, 282: 897CrossRefGoogle Scholar
  67. 67.
    Sumioka, K., Kayashima, H. and Tsutsui, T., Adv. Mater., 2002, 14: 1284CrossRefGoogle Scholar
  68. 68.
    Liu, B., Jin, Z.G., Qu, X.Z. and Yang, Z.Z., Macromol. Rapid Commun., 2007, 28: 322CrossRefGoogle Scholar
  69. 69.
    Ge, J.P. and Yin, Y.D., Angew. Chem. Int. Ed., 2011, 50: 1492CrossRefGoogle Scholar
  70. 70.
    Li, J., Ji, L.J., Rong, J.H. and Yang, Z.Z., Chinese Sci. Bull., 2003, 48: 1803Google Scholar
  71. 71.
    Lee, Y.J., Pruzinsky, S.A. and Braun, P.V., Langmuir, 2004, 20: 3096CrossRefGoogle Scholar
  72. 72.
    Rong, J.H., Ji, L.J., Niu, Z.W., Li, D., Ma, J. and Yang, Z.Z., Chem. J. Chin. U., 2004, 25: 1771Google Scholar
  73. 73.
    Ji, L.J., Rong, J.H., and Yang, Z.Z., Chem. Commun., 2003: 1080Google Scholar
  74. 74.
    Akolekar, D.B., Hind, A.R. and Bhargava, S.K., J. Colloid Interface Sci., 1998, 199: 92CrossRefGoogle Scholar
  75. 75.
    Tanev, P.T., Chibwe, M. and Pinnavaia, T.J., Nature, 1994, 368: 321CrossRefGoogle Scholar
  76. 76.
    Deleuze, H., Schultze, X. and Sherrington, D.C., Polymer, 1998, 39: 6109CrossRefGoogle Scholar
  77. 77.
    Tennikov, M.B., Gazdina, N.V., Tennikova, T.B. and Svec, F., J. Chromatogr., 1998, 798: 55CrossRefGoogle Scholar
  78. 78.
    Holland, B.T., Blanford, C.F. and Do, T., Chem. Mater., 1999, 11: 795CrossRefGoogle Scholar
  79. 79.
    Velev, O.D., Jede, T.A., Lobo, R.F. and Lenhoff, A.M., Nature, 1997, 389: 447CrossRefGoogle Scholar
  80. 80.
    Yoshino, K., Takeda, H. and Kasano, M., Macromol. Symp., 2004, 212: 179CrossRefGoogle Scholar
  81. 81.
    Gates, B., Yin, Y.D. and Xia, Y.N., Chem. Mater., 1999, 11: 2827CrossRefGoogle Scholar
  82. 82.
    Bu, H.T., Rong, J.H. and Yang, Z.Z., Macromol. Rapid Comm., 2002, 23: 460CrossRefGoogle Scholar
  83. 83.
    Zhang, X., Yan, W., Li, H. and Shen, X., Polymer, 2005, 46: 11958CrossRefGoogle Scholar
  84. 84.
    Wang, H., Li, X. and Hong, L., J. Porous Mater., 2006, 13: 115CrossRefGoogle Scholar
  85. 85.
    You, B., Shi, L. and Wen, N., Macromolecules, 2008, 41: 6624CrossRefGoogle Scholar
  86. 86.
    Li, Y., Ma, B., Zhao, J., Xin, W. and Wang, X., J. Alloy. Compd., 2011, 509: 290CrossRefGoogle Scholar
  87. 87.
    Fang, J., Xuan, Y. and Li, Q., Chinese Sci. Bull., 2011, 56: 2156CrossRefGoogle Scholar
  88. 88.
    Blanford, C.F., Yan, H., Schroden, R.C., Al-Daous, M. and Stein, A., Adv. Mater., 2001, 13: 26CrossRefGoogle Scholar
  89. 89.
    Li, H., Chang, L. and Wang, J., J. Mater. Chem., 2008, 18: 5098CrossRefGoogle Scholar
  90. 90.
    Liu, C., Gao, G. and Zhang, Y., Macromol. Rapid Commun., 2012, 33: 380CrossRefGoogle Scholar
  91. 91.
    Yang, L.Y. and Liau, W.B., Synth. Met., 2010, 160: 609CrossRefGoogle Scholar
  92. 92.
    Barry, R.A. and Wiltzius, P., Langmuir, 2006, 22: 1369CrossRefGoogle Scholar
  93. 93.
    Yuan, Y., Li, Z. and Liu, Y., Chem. Eur. J., 2012, 18: 303CrossRefGoogle Scholar
  94. 94.
    Stein, A., Micropor. Mesopor. Mat., 2001, 44–45: 227CrossRefGoogle Scholar
  95. 95.
    Melde, B.J. and Stein, A., Chem. Mater., 2002, 14: 3326CrossRefGoogle Scholar
  96. 96.
    Srinivasan, M., Ferraris, C. and White, T., Environ. Sci. Technol., 2006, 40: 7054CrossRefGoogle Scholar
  97. 97.
    Yuan, L.X., Wang, X.M., Zhang, X., Liu, P.G. and Yan, W.D., Chin. Chem. Lett., 2010, 21: 1493CrossRefGoogle Scholar
  98. 98.
    Wang, X., Zhang, X., Guo, H., Yuan, L. and Liu, P., Polym. Eng. Sci., 2012, 52: 972CrossRefGoogle Scholar
  99. 99.
    Wang, X., Wang, Y., Feng, L., Liu, P. and Zhang, X., Chem. Eng. J., 2012, 203: 251CrossRefGoogle Scholar
  100. 100.
    Chu, Y. and Pan, Q., ACS Appl. Mater. Inter., 2012, 4: 2420CrossRefGoogle Scholar
  101. 101.
    Wang, X., Wang, Q., Liu, P. and Zhang, X., Soft Matter, 2012, 8: 8847CrossRefGoogle Scholar
  102. 102.
    Yuan, J., Dai, H., Zhang, L., Deng, J., Liu, Y., Zhang, H., Jiang, H. and He, H., Catal. Today, 2011, 175: 209CrossRefGoogle Scholar
  103. 103.
    Zhang, G., Zhao, Z., Xu, J., Zheng, J., Liu, J., Jiang, G., Duan, A. and He, H., Appl. Catal. B: Environ., 2011, 107: 302CrossRefGoogle Scholar
  104. 104.
    Zhao, Z., Dai, H., Deng, J., Du, Y., Liu, Y. and Zhang, L., Micropor. Mesopor. Mat., 2012, 163: 131CrossRefGoogle Scholar
  105. 105.
    Ji, K., Dai, H., Deng, J., Song, L., Gao, B., Wang, Y. and Li, X., Appl. Catal. B: Environ., 2013, 129: 539CrossRefGoogle Scholar
  106. 106.
    Ji, K.M., Dai, H.X., Deng, J.G., Li, X.W., Wang, Y., Gao, B.Z., Bai, G.M. and Au, C.T., Appl. Catal. A: Gen., 2012, 447–448: 41CrossRefGoogle Scholar
  107. 107.
    Xie, H., Li, Y., Jin, S., Han, J. and Zhao, X., J. Phys. Chem. C, 2010, 114: 9706CrossRefGoogle Scholar
  108. 108.
    Sun, S., Wang, W. and Zhang, L., J. Mater. Chem., 2012, 22: 19244CrossRefGoogle Scholar
  109. 109.
    Li, S., Zhao, D., Zheng, J., Xue, J., Sun, H. and Shen, C., J. Porous Mater., 2012, DOI:10.1007/s10934-012-9618-6Google Scholar
  110. 110.
    Nagpal, P., Josephson, D.P., Denny, N.R., DeWilde, J., Norris, D.J. and Stein, A., J. Mater. Chem., 2011, 21: 10836CrossRefGoogle Scholar
  111. 111.
    Liang, H., Zhang, Y. and Liu, Y., J. Nat. Gas Chem., 2008, 17: 403CrossRefGoogle Scholar
  112. 112.
    Wei, Y., Liu, J., Zhao, Z., Chen, Y., Xu, C., Duan, A., Jiang, G. and He, H., Angew. Chem. Int. Ed., 2011, 123: 2374Google Scholar
  113. 113.
    Liu, B., Li, C., Zhang, Y., Liu, Y., Hu, W., Wang, Q., Han, L. and Zhang, J., Appl. Catal. B: Environ., 2012, 111–112: 467CrossRefGoogle Scholar
  114. 114.
    Liu, B., Liu, Y., Li, C., Hu, W., Jing, P., Wang, Q. and Zhang, J., Appl. Catal. B: Environ., 2012, 127: 47CrossRefGoogle Scholar
  115. 115.
    Wu, Q.Z., Yin, Q., Liao, J.F., Deng, J.H. and Li, Y.G., Chin. J. Chem., 2005, 23: 689CrossRefGoogle Scholar
  116. 116.
    Wang, Q.Q., Wang, X.M., Feng, L., Xu, X.L. and Xu, Z., Polym. Sci. Ser. B, 2012, 54: 392CrossRefGoogle Scholar
  117. 117.
    Yim, C.H., Baranova, E.A., Abu-Lebdeh, Y. and Davidson, I., J. Power Sources, 2012, 205: 414CrossRefGoogle Scholar
  118. 118.
    Sadakane, M., Sasaki, K., Nakamura, H., Yamamoto, T., Ninomiya, W. and Ueda, W., Langmuir, 2012, 28: 17766CrossRefGoogle Scholar
  119. 119.
    Kotobuki, M., Suzuki, Y., Kanamura, K., Sato, Y., Yamamoto, K. and Yoshida, T., J. Power Sources, 2011, 196: 9815CrossRefGoogle Scholar
  120. 120.
    Vu, A. and A. Stein, Chem. Mater., 2011, 23: 3237CrossRefGoogle Scholar
  121. 121.
    Woo, S.W., Okada, N., Kotobuki, M., Sasajima, K., Munakata, H., Kajihara, K. and Kanamura, K., Electrochim. Acta, 2010, 55: 8030CrossRefGoogle Scholar
  122. 122.
    Cui, W.J., Liu, H.J., Wang, C.X. and Xia, Y.Y., Electrochem. Commun., 2008, 10: 1587CrossRefGoogle Scholar
  123. 123.
    Kim, H., Han, B., Choo, J. and Cho, J., Angew. Chem. Int. Ed. 2008, 47: 10151CrossRefGoogle Scholar
  124. 124.
    Woo, S.W., Okada, N., Kotobuki, M., Sasajima, K., Munakata, H., Kajihara, K. and Kanamura, K., Electrochim. Acta, 2007, 53: 79CrossRefGoogle Scholar
  125. 125.
    Yong, Y.C., Dong, X.C., Chan-Park, M.B., Song, H. and Chen, P., ACS Nano, 2012, 6: 2394CrossRefGoogle Scholar
  126. 126.
    Bosco, J.P., Sasaki, K., Sadakane, M., Ueda, W. and Chen, J.G., Chem. Mater., 2009, 22: 966CrossRefGoogle Scholar
  127. 127.
    Munakata, H., Yamamoto, D. and Kanamura, K., J. Power Sources, 2008, 178: 596CrossRefGoogle Scholar
  128. 128.
    Lin, C.H., Chou, W.J. and Lee, J.T., Macromol. Rapid Commun., 2012, 33: 107CrossRefGoogle Scholar
  129. 129.
    Fierke, M.A., Olson, E.J., Bühlmann, P. and Stein, A., ACS Appl. Mater. Inter., 2012, 4: 4731CrossRefGoogle Scholar
  130. 130.
    Kotobuki, M., Okada, N. and Kanamura, K., Chem. Commun., 2011, 47: 6144CrossRefGoogle Scholar
  131. 131.
    Xuan, J., Jiang, L.P. and Zhu, J.J., Chin. J. Anal. Chem., 2010, 38: 513CrossRefGoogle Scholar
  132. 132.
    Hara, M., Nakano, H., Dokko, K., Okuda, S., Kaeriyama, A. and Kanamura, K., J. Power Sources, 2009, 189: 485CrossRefGoogle Scholar
  133. 133.
    Woo, S.W., Dokko, K., Nakano, H. and Kanamura, K., J. Power Sources, 2009, 190: 596CrossRefGoogle Scholar
  134. 134.
    Kanamura, K., Munakata, H. and Dokko, K., ”Nanotechnology for material development on future energy storage, in electrochemical nanotechnologies”, ed. by Osaka, T., Datta, M. and Shacham-Diamand, Y., Springer New York, 2010, p. 35Google Scholar
  135. 135.
    Choi, B.G., Yang, M., Hong, W.H., Choi, J.W. and Huh, Y.S., ACS Nano, 2012, 6: 4020CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jian-hua Rong
    • 1
  • Li-jun Ji
    • 2
  • Zhen-zhong Yang (杨振忠)
    • 3
  1. 1.Department of Materials Science and EngineeringJinan UniversityGuangzhouChina
  2. 2.College of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouChina
  3. 3.Laboratory of Polymer Physics and Chemistry, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations