Chinese Journal of Polymer Science

, Volume 31, Issue 1, pp 71–82 | Cite as

Anionic synthesis of a “clickable” middle-chain azidefunctionalized polystyrene and its application in shape amphiphiles

  • Kan Yue
  • Jinlin He
  • Chang Liu
  • Mingjun Huang
  • Xue-Hui Dong
  • Kai Guo
  • Peihong Ni
  • Chrys Wesdemiotis
  • Roderic P. Quirk
  • Stephen Z. D. ChengEmail author
  • Wen-Bin ZhangEmail author


“Click chemistry” is, by definition, a general functionalization methodology (GFM) and its marriage with living anionic polymerization is particularly powerful in precise macromolecular synthesis. This paper reports the synthesis of a “clickable” middle-chain azide-functionalized polystyrene (mPS-N3) by anionic polymerization and its application in the preparation of novel shape amphiphiles based on polyhedral oligomeric silsesquioxane (POSS). The mPS-N3 was synthesized by coupling living poly(styryl)lithium chains (PSLi) with 3-chloropropylmethyldichlorosilane and subsequent nucleophilic substitution of the chloro group in the presence of sodium azide. Excess PSLi was end-capped with ethylene oxide to facilitate its removal by flash chromatography. The mPS-N3 was then derived into a giant lipid-like shape amphiphile in two steps following a sequential “click” strategy. The copper(I)-catalyzed azide-alkyne cycloaddition between mPS-N3 and alkyne-functionalized vinyl-substituted POSS derivative (VPOSS-alkyne) ensured quantitative ligation to give polystyrene with VPOSS tethered at the middle of the chain (mPS-VPOSS). The thiol-ene reaction with 1-thioglycerol transforms the vinyl groups on the POSS periphery to hydroxyls, resulting in an amphiphilic shape amphiphile, mPS-DPOSS. This synthetic approach is highly efficient and modular. It demonstrates the “click” philosophy of facile complex molecule construction from a library of simple building blocks and also suggests that mPS-N3 can be used as a versatile “clickable” motif in polymer science for the precise synthesis of complex macromolecules.


Living anionic polymerization Polyhedral oligomeric silsesquioxane (POSS) “Click” chemistry General functionalization methodology (GFM) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hsieh, H.L. and Quirk, R.P., “Anionic polymerization: principles and practical applications”, Marcel Dekker, New York, 1996Google Scholar
  2. 2.
    Baskaran, D. and Muller, A.H.E., Prog. Polym. Sci., 2007, 32: 173CrossRefGoogle Scholar
  3. 3.
    Hadjichristidis, N., Pitsikalis, M., Pispas, S. and Iatrou, H., Chem. Rev., 2001, 101: 3747CrossRefGoogle Scholar
  4. 4.
    Quirk, R.P., Yoo, T., Lee, Y., Kim, J. and Lee, B., Adv. Polym. Sci., 2000, 153: 67CrossRefGoogle Scholar
  5. 5.
    Tasdelen, M.A., Kahveci, M.U. and Yagci, Y., Prog. Polym. Sci., 2011, 36: 455CrossRefGoogle Scholar
  6. 6.
    Quirk, R.P., Mathers, R.T., Ma, J.J., Wesdemiotis, C. and Arnould, M.A., Macromol. Symp., 2002, 183: 17CrossRefGoogle Scholar
  7. 7.
    Quirk, R.P. and Ma, J.J., J. Polym. Sci., Part A: Polym. Chem., 1988, 26: 2031CrossRefGoogle Scholar
  8. 8.
    Quirk, R.P., Kim, H., Polce, M.J. and Wesdemiotis, C., Macromolecules, 2005, 38: 7895CrossRefGoogle Scholar
  9. 9.
    Bellas, V. and Rehahn, M., Macromol. Rapid Commun., 2007, 28: 1415CrossRefGoogle Scholar
  10. 10.
    Quirk, R.P., Janoski, J., Chowdhury, S.R., Wesdemiotis, C. and Dabney, D.E., Macromolecules, 2009, 42: 494CrossRefGoogle Scholar
  11. 11.
    Zhang, W.B., Sun, B., Li, H., Ren, X., Janoski, J., Sahoo, S., Dabney, D.E., Wesdemiotis, C., Quirk, R.P. and Cheng, S.Z.D., Macromolecules, 2009, 42: 7258CrossRefGoogle Scholar
  12. 12.
    Li, Y.W., Zhang, W.B., Janoski, J.E., Li, X.P., Dong, X.H., Wesdemiotis, C., Quirk, R.P. and Cheng, S.Z.D., Macromolecules, 2011, 44: 3328CrossRefGoogle Scholar
  13. 13.
    Quirk, R.P., Janoski, J., Chowdhury, S.R., Wesdemiotis, C. and Dabney, D.E., Macromolecules, 2008, 42: 494CrossRefGoogle Scholar
  14. 14.
    Yu, X., Zhong, S., Li, X., Tu, Y., Yang, S., Van Horn, R.M., Ni, C., Pochan, D.J., Quirk, R.P., Wesdemiotis, C., Zhang, W.B. and Cheng, S.Z.D., J. Am. Chem. Soc., 2010, 132: 16741CrossRefGoogle Scholar
  15. 15.
    Zhang, W.B., Li, Y., Li, X., Dong, X., Yu, X., Wang, C.L., Wesdemiotis, C., Quirk, R.P. and Cheng, S.Z.D., Macromolecules, 2011: 2589Google Scholar
  16. 16.
    He, J., Yue, K., Liu, Y., Yu, X., Ni, P., Cavicchi, K.A., Quirk, R.P., Chen, E.Q., Cheng, S.Z.D. and Zhang, W.B., Polym. Chem., 2012, 3: 2112CrossRefGoogle Scholar
  17. 17.
    Li, Y., Dong, X.H., Guo, K., Wang, Z., Chen, Z., Wesdemiotis, C., Quirk, R.P., Zhang, W.B. and Cheng, S.Z.D., ACS Macro. Lett., 2012, 1: 834CrossRefGoogle Scholar
  18. 18.
    Kolb, H.C., Finn, M.G. and Sharpless, K.B., Angew. Chem. Int. Ed., 2001, 40: 2004CrossRefGoogle Scholar
  19. 19.
    Iha, R.K., Wooley, K.L., Nystrom, A.M., Burke, D.J., Kade, M.J. and Hawker, C.J., Chem. Rev., 2009, 109: 5620CrossRefGoogle Scholar
  20. 20.
    Kempe, K., Krieg, A., Becer, C.R. and Schubert, U.S., Chem. Soc. Rev., 2012, 41: 176CrossRefGoogle Scholar
  21. 21.
    Meldal, M. and Tornøe, C.W., Chem. Rev., 2008, 108: 2952CrossRefGoogle Scholar
  22. 22.
    Hoyle, C.E. and Bowman, C.N., Angew. Chem. Int. Ed., 2010, 49: 1540CrossRefGoogle Scholar
  23. 23.
    Hoyle, C.E., Lowe, A.B. and Bowman, C.N., Chem. Soc. Rev., 2010, 39: 1355CrossRefGoogle Scholar
  24. 24.
    Lowe, A.B., Polym. Chem., 2010, 1: 17CrossRefGoogle Scholar
  25. 25.
    Gao, H. and Matyjaszewski, K., J. Am. Chem. Soc., 2007, 129: 6633CrossRefGoogle Scholar
  26. 26.
    Touris, A. and Hadjichristidis, N., Macromolecules, 2011, 44: 1969CrossRefGoogle Scholar
  27. 27.
    Sugai, N., Heguri, H., Ohta, K., Meng, Q.Y., Yamamoto, T. and Tezuka, Y., J. Am. Chem. Soc., 2010, 132: 14790CrossRefGoogle Scholar
  28. 28.
    Touris, A., Mays, J.W. and Hadjichristidis, N., Macromolecules, 2011, 44: 1886CrossRefGoogle Scholar
  29. 29.
    Wang, G.W., Hu, B., Fan, X.S., Zhang, Y.N. and Huang, J.L., J. Polym. Sci., Part A: Polym. Chem., 2012, 50: 2227CrossRefGoogle Scholar
  30. 30.
    Takano, A., Furutani, T. and Isono, Y., Macromolecules, 1994, 27: 7914CrossRefGoogle Scholar
  31. 31.
    Quirk, R.P., Wang, S.F., Foster, M.D., Wesdemiotis, C. and Yol, A.M., Macromolecules, 2011, 44: 7538CrossRefGoogle Scholar
  32. 32.
    Glotzer, S.C., Science, 2004, 306: 419CrossRefGoogle Scholar
  33. 33.
    Glotzer, S.C., Horsch, M.A., Iacovella, C.R., Zhang, Z., Chan, E.R. and Zhang, X., Curr. Opin. Colloid Interface Sci., 2005, 10: 287CrossRefGoogle Scholar
  34. 34.
    Yu, X., Zhang, W.B., Yue, K., Li, X., Liu, H., Xin, Y., Wang, C.L., Wesdemiotis, C. and Cheng, S.Z.D., J. Am. Chem. Soc., 2012, 134: 7780CrossRefGoogle Scholar
  35. 35.
    Dong, X.H., Zhang, W.B., Li, Y., Huang, M., Zhang, S., Quirk, R.P. and Cheng, S.Z.D., Polym. Chem., 2012, 3: 124CrossRefGoogle Scholar
  36. 36.
    Voronkov, M. and Lavrent’yev, V., Top. Curr. Chem., 1982, 102: 199CrossRefGoogle Scholar
  37. 37.
    Laine, R.M., J. Mater. Chem., 2005, 15: 3725CrossRefGoogle Scholar
  38. 38.
    Li, G., Wang, L., Ni, H. and Pittman, C.U., J. Inorg. Organomet. Polym., 2001, 11: 123CrossRefGoogle Scholar
  39. 39.
    Phillips, S.H., Haddad, T.S. and Tomczak, S.J., Curr. Opin. Solid State Mater. Sci., 2004, 8: 21CrossRefGoogle Scholar
  40. 40.
    Wu, J. and Mather, P.T., Polym. Rev., 2009, 49: 25CrossRefGoogle Scholar
  41. 41.
    Yue, K., Liu, C., Guo, K., Yu, X., Huang, M., Li, Y., Wesdemiotis, C., Cheng, S.Z.D. and Zhang, W.-B., Macromolecules, 2012, 45: 8126CrossRefGoogle Scholar
  42. 42.
    Yue, K., Liu, C., Guo, K., Wu, K., Dong, X.-H., Liu, H., Huang, M., Wesdemiotis, C., Cheng, S. Z. D. and Zhang, W.-B., Polym. Chem., 2012: DOI: 10.1039/C2PY20881DGoogle Scholar
  43. 43.
    Gilman, H. and Cartledge, F.K., J. Organomet. Chem., 1964, 2: 447CrossRefGoogle Scholar
  44. 44.
    Hadjichristidis, N., Iatrou, H., Pispas, S. and Pitsikalis, M., J. Polym. Sci., Part A: Polym. Chem., 2000, 38: 3211CrossRefGoogle Scholar
  45. 45.
    Gunes, K., Isayev, A.I., Li, X.P. and Wesdemiotis, C., Polymer, 2010, 51: 1071CrossRefGoogle Scholar
  46. 46.
    Bellas, V. and Rehahn, M., Macromol. Chem. Phys., 2009, 210: 320CrossRefGoogle Scholar
  47. 47.
    Zhang, W.B., Tu, Y., Ranjan, R., van Horn, R.M., Leng, S., Wang, J., Polce, M.J., Wesdemiotis, C., Quirk, R.P., Newkome, G.R. and Cheng, S.Z.D., Macromolecules, 2008, 41: 515CrossRefGoogle Scholar
  48. 48.
    Li, Y., Hoskins, J.N., Sreerama, S.G. and Grayson, S.M., Macromolecules, 2010, 43: 6225CrossRefGoogle Scholar
  49. 49.
    Zhang, S., Li, A., Zou, J., Lin, L.Y. and Wooley, K.L., ACS Macro. Lett., 2012, 1: 328CrossRefGoogle Scholar
  50. 50.
    Zhang, Z.L., Horsch, M.A., Lamm, M.H. and Glotzer, S.C., Nano Lett., 2003, 3: 1341CrossRefGoogle Scholar
  51. 51.
    Horsch, M.A., Zhang, Z. and Glotzer, S.C., Phys. Rev. Lett., 2005, 95: 056105CrossRefGoogle Scholar
  52. 52.
    Iacovella, C.R., Horsch, M.A., Zhang, Z. and Glotzer, S.C., Langmuir, 2005, 21: 9488CrossRefGoogle Scholar
  53. 53.
    Glotzer, S.C. and Solomon, M.J., Nat. Mater., 2007, 6: 557CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kan Yue
    • 1
  • Jinlin He
    • 1
    • 2
  • Chang Liu
    • 1
  • Mingjun Huang
    • 1
  • Xue-Hui Dong
    • 1
  • Kai Guo
    • 1
  • Peihong Ni
    • 2
  • Chrys Wesdemiotis
    • 1
    • 3
  • Roderic P. Quirk
    • 1
  • Stephen Z. D. Cheng
    • 1
    Email author
  • Wen-Bin Zhang
    • 1
    Email author
  1. 1.Department of Polymer Science, College of Polymer Science and Polymer EngineeringThe University of AkronAkronUSA
  2. 2.College of Chemistry, Chemical Engineering, and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationSoochow UniversitySuzhouChina
  3. 3.Department of ChemistryThe University of AkronAkronUSA

Personalised recommendations