Advertisement

Chinese Journal of Polymer Science

, Volume 30, Issue 1, pp 63–71 | Cite as

Association behavior of porphyrin pendants in pH-sensitive water-soluble polymer

  • Ke-wei Ding
  • Fei Wang
  • Fei-peng Wu (吴飞鹏)Email author
Article

Abstract

A novel tripyridylporphyrin monomer, 5-[4-[2-(acryloyloxy)ethoxy]phenyl]-l0,l5,20-tris(4-pyridyl)porphyrin (TrPyP), was synthesized and polymerized with acrylamide (AM) to prepare the hydrophobically associating water-soluble polymer PAM-TrPyP. The aggregation behavior of porphyrin pendants was investigated by UV-Visible and fluorescence spectra. The polymer displays a strong tendency of hydrophobic association even in dilute solutions. With increasing the concentration, the maximum absorption wavelength of Soret band changes from 416 nm to 407 nm, and the fluorescence corrected for the inner filter effect exhibits moderate concentration quenching. All the results indicate that π-π interaction of porphyrin pendants plays a key role in association of PAM-TrPyP, and H-aggregates of porphyrins are mainly formed in the concentrated solution. On the other hand, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to follow the changes in size and structure of the macromolecular assemblies with the concentration increase. The polymer aggregation conformation changes from loose “vesicle-like” morphology to solid globule accordingly. When pH value of solution decreases to 4.3, pyridine moieties on porphyrin pendants could be protonated and the H-aggregates formed in macromolecular matrix are destroyed by electrostatic repulsion interactions.

Keywords

Porphyrin Water-soluble polymer π-π Interactions H-aggregate pH-sensitivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beletskaya, I., Tyurin, V.S., Tsivadze, A.Y., Guilard, R. and Stern, C., Chem. Rev., 2009, 109: 1659CrossRefGoogle Scholar
  2. 2.
    Satake, A. and Kobuke, Y., Tetrahedron, 2005, 61: 13CrossRefGoogle Scholar
  3. 3.
    Choi, M.S., Tetrahedron Lett., 2008, 49: 7050CrossRefGoogle Scholar
  4. 4.
    Tait, M.J. and Franks, F., Nature, 1971, 230: 91CrossRefGoogle Scholar
  5. 5.
    Gandini, S.C.M., Yushmanov, V.E., Borissevitch, I.E. and Tabak, M., Langmuir, 1999, 15: 6233CrossRefGoogle Scholar
  6. 6.
    Scolaro, L.M., Donato, C., Castriciano, M., Romeo, A. and Romeo, R., Inorg. Chim. Acta, 2000, 300–302: 978CrossRefGoogle Scholar
  7. 7.
    Iida, K., Nango, M., Matsuura, M., Yamaguchi, M., Sato, K., Tanaka, K., Akimoto, K., Yamashita, K., Tsuda, K. and Kurono Y., Langmuir, 1996, 12: 450CrossRefGoogle Scholar
  8. 8.
    Li, J.B., An, Y.L., Chen, X., Xiong, D.A., Li, Y., Huang, N. and Shi, L.Q., Macromol. Rapid Commun, 2008, 29: 214CrossRefGoogle Scholar
  9. 9.
    Morishima, Y., Chinese J. Polym. Sci., 2000, 18(4): 323Google Scholar
  10. 10.
    Nowakowska, M., Karewicz, A., Loukine, N. and Guillet, J.E., Polymer, 2002, 43: 2003CrossRefGoogle Scholar
  11. 11.
    Kamachi, M., Cheng, X.S., Kida, T., Kajiwara, A., Shibasaka, M. and Nagata, S., Macromolecules, 1987, 20: 2665CrossRefGoogle Scholar
  12. 12.
    Nowakowska, M., Karewicz, A., Kłos, M. and Zapotoczny, S., Macromolecules, 2003, 36: 4134CrossRefGoogle Scholar
  13. 13.
    Wang, R.M., He, Y.F., Lei, Z.Q., Wang, Y.P. and Li, S.B., Chinese J. Polym. Sci., 1998, 16(1): 91Google Scholar
  14. 14.
    Zhou, Q.F., Zhu, X.L. and Wen, Z.Q., Macromolecules, 1989, 22: 491CrossRefGoogle Scholar
  15. 15.
    Malik, S., Kawano, S.-I., Fujita, N. and Shinkai, S., Tetrahedron, 2007, 63: 7326CrossRefGoogle Scholar
  16. 16.
    Casas, C., Saint-Jalmes, B., Loup, C., Lacey, C.J. and Meunier, B., J. Org. Chem., 1993, 58: 2913CrossRefGoogle Scholar
  17. 17.
    Kasha, M., Rawls, H.R. and El-Bayoumi, M.A., Pure Appl. Chem., 1965, 11: 371CrossRefGoogle Scholar
  18. 18.
    Andrade, S.M., Teixeira, C., Togashi, D.M., Costa, S.M.B. and Sobral, A.J.F.N., J. Photochem. Photobiol., A, 2006, 178: 225CrossRefGoogle Scholar
  19. 19.
    Stella, L., Capodilupo, A.L. and Bietti, M., Chem. Commun., 2008, (39): 4744Google Scholar
  20. 20.
    Zozulya, V.N., Ryazanova, O.A., Voloshin, I.M., Glamazda, A.Y. and Karachevtsev, V.A., J. Fluoresc., 2010, 20: 695CrossRefGoogle Scholar
  21. 21.
    Thyagarajan, S., Leiding, T., Årsköld, S.P., Cheprakov, A.V. and Vinogradov, S.A., Inorg. Chem., 2010, 49: 9909CrossRefGoogle Scholar
  22. 22.
    Yue, B.H., Huang, C.-Y., Nieh, M.-P., Glinka, C.J. and Katsaras, J., J. Phys. Chem. B, 2005, 109: 609CrossRefGoogle Scholar
  23. 23.
    Kim, S.Y., Lee, K.E., Han, S.S. and Jeong, B., J. Phys. Chem. B, 2008, 112: 7420CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ke-wei Ding
    • 1
    • 2
  • Fei Wang
    • 1
    • 2
  • Fei-peng Wu (吴飞鹏)
    • 1
    Email author
  1. 1.Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations