Chinese Journal of Polymer Science

, Volume 30, Issue 1, pp 138–142 | Cite as

One-step process to make electrically conductive thermoplastic vulcanizates filled with MWCNTs

  • Hao-sheng Wang
  • Xiao-hong Zhang
  • Yi-lei Zhu
  • Zhi-hai Song
  • Jin-liang Qiao (乔金樑)Email author


Electrically conductive thermoplastic vulcanizates (TPVs) filled by multi-walled carbon nanotubes (MWCNTs) are prepared by a simple one-step melt mixing process, based on linear low density polyethylene (LLDPE) and ultrafine full-vulcanized rubber particles (UFRP). An ideal morphology with controlled localization of MWCNTs in continuous LLDPE matrix and appropriate size of finely-dispersed UFRP can be achieved at the same time. The controlled localization of MWCNTs in the continuous phase facilitates the formation of conductive pathway, and thus the volume resistivity of the as-prepared LLDPE/UFRP/MWCNTs thermoplastic vulcanizates is significantly decreased. The results show that both the blend ratio of LLDPE/UFRP and the loading of MWCNTs have remarkable effect on the volume resistivity. Significantly, the electrically conductive TPVs exhibit good mechanical properties duo to the fine dispersion of UFRP in LLDPE. The added MWCNTs are capable of imparting reinforcement effects to thermoplastic vulcanizates with just a slight loss of stretchability and elasticity.


Thermoplastic vulcanizates Multi-walled carbon nanotubes Ultrafine full-vulcanized rubber particles Volume resistivity Mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ozawa, O. and Imada, K., 2003, U.S. Pat., 6,589,647Google Scholar
  2. 2.
    Pfeiffer, B., Heydweiller, J. and Risch, J., 1998, U.S. Pat., 5,736,603Google Scholar
  3. 3.
    Karttunen, M. and Mustonen, J., 2003, U.S. Pat., 6,638,448Google Scholar
  4. 4.
    Coran, A.Y. and Patel, R.P., Rubb. Chem. Tech., 1980, 53: 141CrossRefGoogle Scholar
  5. 5.
    Coran, A.Y. and Patel, R.P., Rubb. Chem. Tech., 1980, 53: 781CrossRefGoogle Scholar
  6. 6.
    Coran, A.Y. and Patel, R.P., Rubb. Chem. Tech., 1981, 54: 91CrossRefGoogle Scholar
  7. 7.
    Katbab, A.A., Nazockdast, H. and Bazgir, S., J. Appl. Polym. Sci., 2000, 75: 1127CrossRefGoogle Scholar
  8. 8.
    Le, H., Heidenreich, D., Kolesov, I., Ilisch, S. and Radusch, H., J. Appl. Polym. Sci., 2010, 117: 2622Google Scholar
  9. 9.
    Le, H.H., Tiwari, M., Ilisch, S. and Radusch, H.J., Plast. Rubber Compos., 2006, 35: 410CrossRefGoogle Scholar
  10. 10.
    Tian, H., Tian, M., Zou, H., Dang, Z. and Zhang, L., J. Appl. Polym. Sci., 2010, 117: 691CrossRefGoogle Scholar
  11. 11.
    Qiao, J., Wei, G., Zhang, X., Zhang, S., Gao, J., Zhang, W., Liu, Y. and Li, J., 2002, U.S. Pat., 6,423,760Google Scholar
  12. 12.
    Zhang, X., Liu, Y., Gao, J., Huang, F., Song, Z., Wei, G. and Qiao, J., Polymer, 2004, 45: 6959CrossRefGoogle Scholar
  13. 13.
    Xu, X., Qiao, J., Yin, J., Gao, Y., Zhang, X., Ding, Y., Liu, Y., Xin, Z., Gao, J., Huang, F. and Song, Z., J. Polym. Sci. Polym. Phys., 2004, 42: 1042CrossRefGoogle Scholar
  14. 14.
    Zhang, X., Wei, G., Liu, Y., Gao, J., Zhu, Y., Song, Z., Huang, F., Zhang, M. and Qiao, J., Macromol. Symp., 2003, 193: 261CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hao-sheng Wang
    • 1
    • 2
  • Xiao-hong Zhang
    • 2
  • Yi-lei Zhu
    • 1
    • 2
  • Zhi-hai Song
    • 2
  • Jin-liang Qiao (乔金樑)
    • 1
    • 2
    Email author
  1. 1.College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.SINOPEC Beijing Research Institute of Chemical IndustryBeijingChina

Personalised recommendations