Chinese Journal of Polymer Science

, Volume 30, Issue 1, pp 45–55 | Cite as

A study on the structural transition of a single polymer chain by parallel tempering molecular dynamics simulation

  • Zhou-ting Jiang (姜舟婷)Email author
  • Peng Xu
  • Ting-ting Sun


The structural transition of a single polymer chain with chain length of 100, 200 and 300 beads was investigated by parallel tempering MD simulation. Our simulation results can capture the structural change from random coil to orientationally ordered structure with decreasing temperature. The clear transition was observed on the curves of radius of gyration and global orientational order parameter P as the function of temperature, which demonstrated structural formation of a single polymer chain. The linear relationships between three components of square radius of gyration Rgx2, Rgy2, Rgz2 and global orientational order P can be obtained under the structurally transformational process. The slope of the linear relationship between x (or y-axis) component Rgx2 (or Rgy2) and P is negative, while that of Rgz2 as the function of P is positive. The absolute value of slope is proportional to the chain length. Once the single polymer chain takes the random coil or ordered configuration, the linear relationship is invalid. The conformational change was also analyzed on microscopic scale. The polymer chain can be treated as the construction of rigid stems connecting by flexible loops. The deviation from exponentially decreased behavior of stem length distribution becomes prominent, indicating a stiffening of the chain arises leading to more and more segments ending up in the trans state with decreasing temperature. The stem length Ntr is about 21 bonds indicating the polymer chain is ordered with the specific fold length. So, the simulation results, which show the prototype of a liquid-crystalline polymer chain, are helpful to understand the crystallization process of crystalline polymers.


A polymer chain Structural transition Parallel tempering molecular dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yau, S.T. and Vekilov, P.G., Nature, 2000, 406: 494CrossRefGoogle Scholar
  2. 2.
    Oxtoby, D.W., Nature, 2000, 406: 464CrossRefGoogle Scholar
  3. 3.
    Gee, R.H., Lacevic, N. and Fried, L.E., Nature Materials, 2006, 5: 39CrossRefGoogle Scholar
  4. 4.
    Olmsted, P.D., Poon, W.C.K., McLeish, T.C.B., Terrill, N.J. and Ryan, A.J., Phys. Rev. Lett., 1998, 81: 373CrossRefGoogle Scholar
  5. 5.
    ten Wolde, P.R. and Frenkel, D., Science, 1997, 277: 1975CrossRefGoogle Scholar
  6. 6.
    Heeley, E.L., Maidens, A.V., Olmsted, P.D., Bras, W., Dolbnya, I.P., Fairclough, J.P.A., Terril, N.J. and Ryan, A.J., Macromolecules, 2003, 36: 3656CrossRefGoogle Scholar
  7. 7.
    Terrill, N.J., Fairclough, J.P.A., Towns-Andrews, E., Komanschek, B.U., Young, R.J. and Ryan, A.J., Polymer, 1998, 39: 2381CrossRefGoogle Scholar
  8. 8.
    Shimada, T., Doi, M. and Okano, K., J. Chem. Phys., 1988, 88: 7181CrossRefGoogle Scholar
  9. 9.
    Kavassalis, T.A. and Sundararajan, P.R., Macromolecular, 1993, 26: 4144CrossRefGoogle Scholar
  10. 10.
    Fujiwara, S. and Sato, T., J. Chem. Phys., 1997, 107: 613CrossRefGoogle Scholar
  11. 11.
    Fujiwara, S. and Sato, T., J. Chem. Phys., 2001, 114: 6455CrossRefGoogle Scholar
  12. 12.
    Fujiwara, S. and Sato, T., J. Phy. Soc. Jpn., 2006, 75: 024605CrossRefGoogle Scholar
  13. 13.
    Muthukumar, M., and Welch, P., Polymer, 2000, 41: 8833CrossRefGoogle Scholar
  14. 14.
    Günter, R. and Jens-Uwe, S., Phy. Rev. Lett., 1998, 80: 3771CrossRefGoogle Scholar
  15. 15.
    van Duijneveldt, J.S. and Frenkel, D., J. Chem. Phys., 1992, 96: 4655CrossRefGoogle Scholar
  16. 16.
    He, L.L., Zhang, L.X., Chen, H.P. and Liang, H.J., Polymer, 2009, 50: 3403CrossRefGoogle Scholar
  17. 17.
    He, L.L., Zhang, L.X., Ye, Y.S. and Liang, H.J., J. Phys. Chem. B, 2010, 114: 7189CrossRefGoogle Scholar
  18. 18.
    Li, S.B., Ji, Y.Y., Chen, P., Zhang, L.X. and Liang, H.J., Polymer, 2010, 51: 4994CrossRefGoogle Scholar
  19. 19.
    Kirkpatrick, S., Gelatt Jr, C.D. and Vecchi, M.P., Science, 1983, 220: 671CrossRefGoogle Scholar
  20. 20.
    Frantz, D.D., Freeman, D.L. and Doll, J.D., J. Chem. Phys., 1990, 93: 2769CrossRefGoogle Scholar
  21. 21.
    Lyubartsev, A.P., Martsinovski, A.A., Shevkunov, S.V. and Vorontsov-Velyaminov, P.N.J., Chem. Phys., 1992, 96: 1776Google Scholar
  22. 22.
    Marinari, E. and Parisi, G., Europhys. Lett., 1992, 19: 451CrossRefGoogle Scholar
  23. 23.
    Geyer, C.J. and Thompson, E.A., J. Am. Stat. Soc., 1995, 90: 909CrossRefGoogle Scholar
  24. 24.
    Mayo, S.L., Olafson, B.D. and Goddard, III. W.A., J. Phys. Chem., 1990, 94: 8897CrossRefGoogle Scholar
  25. 25.
    Nose, S., J. Chem. Phy., 1984, 81: 511CrossRefGoogle Scholar
  26. 26.
    Hoover, W.G., Phys. Rev. A, 1985, 31: 1695CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zhou-ting Jiang (姜舟婷)
    • 1
    Email author
  • Peng Xu
    • 1
  • Ting-ting Sun
    • 2
  1. 1.Department of Applied PhysicsChina Jiliang UniversityHangzhouChina
  2. 2.College of Information and Electronic EngineeringZhejiang Gongshang UniversityHangzhouChina

Personalised recommendations