Chinese Journal of Polymer Science

, Volume 30, Issue 1, pp 101–111 | Cite as

Production and characterization of poly(3-hydroxybutyrateco-3-hydroxyhexanoate)-poly(ethylene glycol) hybird copolymer with adjustable molecular weight

  • Ya-li Zhang
  • Xiao-yun Lu (卢晓云)Email author
  • Qian-qian Liu
  • Ming-chuan Li
  • Zhi-qian Yang
  • Jian-gang Ma


A novel natural-synthetic hybrid block copolymer was synthesized by Aeromonas hydrophila 4AK4 in poly(ethylene glycol) (PEG, Mn = 200) modified fermentation. This hybrid biomaterial consists of the natural hydrophobic polymer poly(3-hydroxybutyrat-co-3-hydroxyhexanoate) (PHBHHx) end-capped with hydrophilic PEG, which has the increased flexibility as well as the improved thermal stability. Addition of diethylene glycol (DEG) and ethylene glycol could not result in the accumulation of hybrid block copolymer. DEG and ethylene glycol, together with PEG-200, could cause a reduction of molar mass of PHBHHx, resulting in a series of low molecular weight polymer and the reduction of the polymer yield as well as the cellular productivity. In vitro degradation of PHBHHx and PHBHHx-PEG with different molecular weight showed that the decrease of molecular weight accelerated the degradation of copolymers, but PEG modification has little effect on its degradation rate. The results in this study provided a convenient and direct method to produce a series of PHBHHx and PHBHHx-PEG materials with adjustable molecular weight and broad molecular weight distribution which will be very useful for the biomedical applications.


Biopolyester Biodegradable Molecular weight Polyhydroxyalkanoates Polyethylene glycol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, A.J. and Dawes, E.A., Microbiol. Rev., 1990, 54: 450PubMedPubMedCentralGoogle Scholar
  2. 2.
    Lee, S.Y., Biotech. Bioeng., 1996, 49: 1CrossRefGoogle Scholar
  3. 3.
    Chen, G.Q. and Wu, Q., Biomaterials, 2005, 26: 6565CrossRefGoogle Scholar
  4. 4.
    Doi, Y., Kitamura, S. and Abe, H., Macromolecules, 1995, 28: 4822CrossRefGoogle Scholar
  5. 5.
    Yoshie, N., Saito, M. and Inoue, Y., Macromolecules, 2001, 34: 8953CrossRefGoogle Scholar
  6. 6.
    Qu, X.H., Wu, Q., Liang, J., Qu, X., Wang, S.G. and Chen, G.Q., Biomaterials, 2005, 26: 6991CrossRefGoogle Scholar
  7. 7.
    Deng, Y., Zhao, K., Zhang, X.F., Hu, P. and Chen, G.Q., Biomaterials, 2002, 23: 4049CrossRefGoogle Scholar
  8. 8.
    Zhao, K., Yang, X., Chen, G.Q. and Chen, J.C., J. Materials Sci.-Materials Med., 2002, 13: 849CrossRefGoogle Scholar
  9. 9.
    Yang, X.S., Zhao, K. and Chen, G.Q., Biomaterials, 2002, 23: 1391CrossRefGoogle Scholar
  10. 10.
    Wang, Y.W., Wu, Q. and Chen, G.Q., Biomaterials, 2003, 24: 4621CrossRefGoogle Scholar
  11. 11.
    Wang, Y.W., Wu, Q. and Chen, G.Q., Biomaterials, 2004, 25: 669CrossRefGoogle Scholar
  12. 12.
    Yang, M., Zhu, S.S., Chen, Y., Chang, Z.J., Chen, G.Q., Gong, Y.D., Zhao, N.M. and Zhang, X.F., Biomaterials, 2004, 25: 1365CrossRefGoogle Scholar
  13. 13.
    Wang, Y.W., Mo, W.K., Yao, H.L., Wu, Q., Chen, J.C. and Chen, G.Q., Polym. Degrad. Stab., 2004, 85: 815CrossRefGoogle Scholar
  14. 14.
    Qu, X.H., Wu, Q., Zhang, K.Y. and Chen, G.Q., Biomaterials, 2004, 27: 3540Google Scholar
  15. 15.
    Cheng, S., Wu, Q., Zhao, Y., Zou, B. and Chen, G.Q., Polym. Degrad. Stab., 2006, 91: 3191CrossRefGoogle Scholar
  16. 16.
    Ashby, R.D., Shi, F.Y. and Gross, R.A., Tetrahedron, 1997, 53: 15209CrossRefGoogle Scholar
  17. 17.
    Ashby, R.D., Shi, F.Y. and Gross, R.A., Biotech. Bioeng., 1999, 62: 106CrossRefGoogle Scholar
  18. 18.
    Shi, F.Y., Ashby, R.D. and Gross, R.A., Macromolecules, 1996, 29: 7753CrossRefGoogle Scholar
  19. 19.
    Ashby, R.D., Solaiman, D.K.Y. and Foglia, T.A., Appl. Microbiol. Biotechnol., 2002, 60: 154CrossRefGoogle Scholar
  20. 20.
    Zanzig, J. and Scholz, C., J. Polym. Environ., 2003, 11: 145CrossRefGoogle Scholar
  21. 21.
    Foster, L.J.R., Sanguanchaipaiwong, V., Gabelish, C.L., Hook, J. and Stenzel, M., Polymer, 2005, 46: 6587CrossRefGoogle Scholar
  22. 22.
    Moghimi, S.M., Hunter, A.C. and Murray, J.C., Pharmacol. Rev., 2001, 53(2): 283PubMedGoogle Scholar
  23. 23.
    van Vlerken, L.E., Vyas, T.K. and Amiji, M.M., Pharm. Res., 2007, 24(8): 1405CrossRefGoogle Scholar
  24. 24.
    Huynh, N.T., Roger, E., Lautram, N., Benoit, J.P. and Passirani, C., Nanomedicine, 2010, 5(9): 1415CrossRefGoogle Scholar
  25. 25.
    Ramsay, J.A., Berger, E., Voyer, R., Chavarie, C. and Ramsay, B.A., Biotechnol. Tech., 1994, 8: 589CrossRefGoogle Scholar
  26. 26.
    Gan, D.J., Lu, S.Q. and Cao, W.W., Eur. Polym. J., 2004, 40: 2481CrossRefGoogle Scholar
  27. 27.
    Kato, M., Bao, H.J., Kang, C.K., Fukui, T. and Doi, Y., Appl. Microbiol. Biotechnol., 1996, 45: 363CrossRefGoogle Scholar
  28. 28.
    Fernandez-Castillo, R., Rodriguez-Valera, F., Gonzales-Ramos, J. and Ruiz-Berraquero, F., Appl. Environ. Microbiol., 1986, 51: 214PubMedPubMedCentralGoogle Scholar
  29. 29.
    Xie, W.P. and Chen, G.Q., Biochem. Eng. J., 2008, 38: 384CrossRefGoogle Scholar
  30. 30.
    Shangguan, Y.Y., Wang, Y.W., Wu, Q. and Chen, G.Q., Biomaterials, 2006, 27: 2349CrossRefGoogle Scholar
  31. 31.
    Saha, S.P., Patra, A. and Paul, A.K., J. Ind. Microbiol. Biotechnol., 2006, 33: 377CrossRefGoogle Scholar
  32. 32.
    Snell, K.D., Hogan, S.A., Sim, S.J., Sinskey, A.J. and Rha, C., 1998, U.S. Pat., 5,811,272Google Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ya-li Zhang
    • 1
  • Xiao-yun Lu (卢晓云)
    • 1
    Email author
  • Qian-qian Liu
    • 1
  • Ming-chuan Li
    • 1
  • Zhi-qian Yang
    • 1
  • Jian-gang Ma
    • 1
  1. 1.Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi’an Jiaotong UniversityXi’anChina

Personalised recommendations