Advertisement

Chinese Journal of Polymer Science

, Volume 30, Issue 1, pp 16–25 | Cite as

Electrorheology and creep-recovery behavior of conducting polythiophene/poly(oxymethylene)-blend suspensions

  • Ozlem Erol
  • H. Ibrahim UnalEmail author
  • Bekir Sari
Article

Abstract

Electrorheological properties and creep-recovery behavior of polythiophene/polyoxymethylene-blend having PT(50%)/POM(50%) composition were investigated. Particle size, conductivity and dielectric values were measured to be 24.77 μm, 3.85 × 10−5 S·m−1 and 26.75, respectively. Sedimentation ratio was measured to be 64% at the end of 16 days. The effects of dispersed particle volume fraction, external electric field strength, shear rate, frequency and temperature on ER properties and storage modulus of PT/POM-blend/silicone oil (SO) suspensions were examined. Enhancement were observed in the electric field viscosities of the suspensions and thus they were classified as a smart material. Shear thinning non-Newtonian viscoelastic behavior was determined for PT/POM-blend/SO system. Further, time-dependent deformation was examined by creep-recovery tests and recoverable viscoelastic deformation established.

Keywords

Conducting polythiophene/poly(oxymethylene) Blends Electrorheogical fluids Creep-recovery behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gazotti Jr, W.A., Casalbore-Miceli, G., Mitzakoff, S., Geri, A., Gallazzi, M.C. and de Paoli, M.A., Electrochim. Acta., 1999, 44: 1965CrossRefGoogle Scholar
  2. 2.
    Laakso, J., Osterholm, J.E., Nyholm, P., Stubb, H. and Punnka, E., Synthetic Met., 1990, 37: 145CrossRefGoogle Scholar
  3. 3.
    Goncalves, D., Waddon, A., Karasz, F.E. and Akcerlud, L., Synthetic Met., 1995, 74: 197CrossRefGoogle Scholar
  4. 4.
    Kucukyavuz, S., Sankir, M. and Kucukyavuz, Z., Synthetic Met., 2002, 128: 247CrossRefGoogle Scholar
  5. 5.
    Shen, Z., Xue, H. and Li, Y., Synthetic Met., 2001, 124: 345CrossRefGoogle Scholar
  6. 6.
    Faez, R., Schuster, R.H. and De Paoli, M.A., Eur. Polym. J., 2002, 38: 2459CrossRefGoogle Scholar
  7. 7.
    Zrinyi, M., Feher, J. and Filipcsei, G., Macromolecules, 2000, 33: 5751CrossRefGoogle Scholar
  8. 8.
    Puvanatvattana, T., Chotpattananont, D., Hiamtup, P., Niamlang, S., Sirivat, A. and Jamieson, A.M., React. Funct. Polym., 2006, 66: 1575CrossRefGoogle Scholar
  9. 9.
    Anand, J., Palaniappan, S. and Sathyanarayana, D.N., Prog. Polym. Sci., 1998, 23: 993CrossRefGoogle Scholar
  10. 10.
    Hao, T., Adv. Mater., 2001, 13: 1847CrossRefGoogle Scholar
  11. 11.
    Hao, T., Adv. Colloid Interfac., 2002, 97: 1CrossRefGoogle Scholar
  12. 12.
    Yamaguchi, H., Zhang, X.R., Niu, X.D., Smart Mater. Struct., 2010, 19: 105032CrossRefGoogle Scholar
  13. 13.
    Liu, Y.D., Fang, F.F., Choi, H.J., Mater. Lett., 2010, 64: 154CrossRefGoogle Scholar
  14. 14.
    Lee, Y.H., Kim, C.A., Jang, W.H., Choi, H.J. and Jhon, M.S., Polymer, 2001, 42: 8277CrossRefGoogle Scholar
  15. 15.
    Kumar, D. and Sharma, R.C., Eur. Polym. J., 1998, 34: 1053CrossRefGoogle Scholar
  16. 16.
    Eyrik, M., Yavuz, M., Unal, H.I. and Sari, B., Polym. Composite, 2009, 30: 1345CrossRefGoogle Scholar
  17. 17.
    Ozgun, A., Sari, B., Uygun, A., Unal, H.I. and Cakanyildirim, C., Int. J. Polym. Anal. Ch., 2009, 14: 469CrossRefGoogle Scholar
  18. 18.
    German, R.M., “Powder metallurgy science: material powder industries separation”, MPIF, Princeton, 1994, p. 28Google Scholar
  19. 19.
    Block, H. and Kelly, J.P., J. Phys. D: Appl. Phys., 1988, 21: 1661CrossRefGoogle Scholar
  20. 20.
    Uemura, T., Minagawa, K., Takimoto, J. and Koyama, K., J. Chem. Soc. Faraday Trans., 1995, 91: 1051CrossRefGoogle Scholar
  21. 21.
    Lu, J. and Zhao, X., J. Colloid Interf. Sci., 2004, 273: 651CrossRefGoogle Scholar
  22. 22.
    Kittipoomwong, D., Klingenberg, D.J., Shkel, Y.M., Morris, J.F. and Ulicny, J.C., J. Rheol., 2008, 52: 225CrossRefGoogle Scholar
  23. 23.
    Wu, S. and Shen, J., J. Appl. Polym. Sci., 1996, 60: 2159CrossRefGoogle Scholar
  24. 24.
    Parthasaraty, M. and Klingenberg, D.J., Mater. Sci. Eng. R, 1996, 17: 57CrossRefGoogle Scholar
  25. 25.
    Conrad, H. and Chen, Y., “Progress in electrorheology”, Plenum, New York, 1970, p. 55Google Scholar
  26. 26.
    Davis, L.C., Appl. Phys. Lett., 1992, 60: 319CrossRefGoogle Scholar
  27. 27.
    Chotpattananont, D., Sirivat, A. and Jamieson, A.M., Macromol. Mater. Eng., 2004, 289: 434CrossRefGoogle Scholar
  28. 28.
    Kim, S.G., Lim J.Y., Sung J.H., Choi, H.J. and Seo, Y., Polymer, 2007, 48: 6622CrossRefGoogle Scholar
  29. 29.
    Sung, J.H., Hong, C.H., Park, B.J., Choi, H.J. and Jhon, M.S., Scripta Mater., 2005, 53: 1101CrossRefGoogle Scholar
  30. 30.
    Belza, T., Pavlinek, V., Saha, P. and Quadrat, O., Colloid. Surface. A, 2008, 316: 89CrossRefGoogle Scholar
  31. 31.
    Ramos-Tejada, M.M., Espin, M.J., Perea, R. and Delgado, A.V., J. Non-Newton. Fluid, 2009, 159: 34CrossRefGoogle Scholar
  32. 32.
    Munstedt, H., Koppl, T. and Triebel, C., Polymer, 2010, 51: 185CrossRefGoogle Scholar
  33. 33.
    Wolff, F., Resch, J.A., Kaschta, J. and Munstedt, H., Rheol. Acta, 2010, 49: 95CrossRefGoogle Scholar
  34. 34.
    Cho, M.S., Lee J.H., Choi, H.J., Ahn, K.H., Lee, S.J. and Jeon, D., J. Mater. Sci., 2004, 39: 1377CrossRefGoogle Scholar
  35. 35.
    Genovese, A. and Shanks, R.A., Macromol. Mater. Eng., 2007, 292: 184CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Smart Materials Research Lab, Chemistry DepartmentGazi UniversityAnkaraTurkey

Personalised recommendations