Chinese Journal of Polymer Science

, Volume 28, Issue 6, pp 923–930 | Cite as

Polymerization and characterization of high conductivity and good adhension polypyrrole films for electromagnetic interference shielding

  • Yong-sheng Qiao
  • La-zhen Shen (沈腊珍)
  • Tao Dou
  • Ming Hu


Polypyrrole (PPy) shows a favorable application in the electromagnetic interference (EMI) shielding due to its good electrical conductivity and outstanding air stability. Conducting PPy films with high conductivity and good adhesion were successfully polymerized on the surface of insulating epoxy resin substrates using chemical polymerization. The factors affecting the properties of PPy films, such as the surface morphology, adhesion between PPy film and substrate, electrical conductivity, EMI shielding effectiveness (SE), were investigated. The adhesion was improved significantly through a three-step surface pretreatment of epoxy resin substrates including removing impurities, roughening, and surface modification with silane coupling agent. An enhancement in the conductivity of PPy films of about one order of magnitude was achieved by adding dopant in FeCl3 solution. The higher the conductivity, the better the shielding effectiveness. Taking sodium p-toluenesulfonate doped PPy film as example, EMI SE was in the practically useful range of about 30 dB over a wide frequency range from 30 MHz to 1500 MHz. The PPy film samples were characterized by scanning electron microscopy (SEM), infrared spectra (IR), X-ray photoelectron spectroscopy (XPS) and the flange coaxial transmission device. The four-point probe method was used to measure conductivity of PPy films.


Polypyrrole film EMI Conductivity Adhesion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schmeißer, D., Bartl, A., Dunsch, L., Naarmann, H. and Gopel, W., Synth. Met., 1998, 93: 43CrossRefGoogle Scholar
  2. 2.
    MacDiarmid, A.G., Angew. Chem. Int. Ed., 2001, 40: 2581CrossRefGoogle Scholar
  3. 3.
    Lee, E.S., Park, J.H., Wallace, G.G. and Bae, Y.H., Polym. Int., 2004, 53: 400CrossRefGoogle Scholar
  4. 4.
    Zhang, X., Zhang, J., Song, W. and Liu, Z., J. Phys. Chem. B, 2006, 110: 1158CrossRefGoogle Scholar
  5. 5.
    Pini, N., Siegrist, M., Busato, S. and Ermanni, P., Polym. Eng. Sci., 2007, 47: 662CrossRefGoogle Scholar
  6. 6.
    Burroughes, J.H., Nature, 1990, 247: 359Google Scholar
  7. 7.
    Lu, Y., Pich, A., Adler, H.J.P. and Wang, G., Polymer, 2008, 49: 5002CrossRefGoogle Scholar
  8. 8.
    Deng, J.G., Peng, Y.X., He, C.L., Long, X.P., Li, P. and Chan, A.S.C., Polym. Int., 2003, 52: 1182CrossRefGoogle Scholar
  9. 9.
    Håkansson, E., Amiet, A., Nahavandi, S. and Kaynak, A., Eur. Polym. J., 2007, 43:205CrossRefGoogle Scholar
  10. 10.
    Deepa, M. and Ahmad, S., Eur. Polym. J., 2008, 44: 3288CrossRefGoogle Scholar
  11. 11.
    Wang, L.X., Li, X.G. and Yang, Y.L., React. Funct. Polym., 2001, 47: 125CrossRefGoogle Scholar
  12. 12.
    Lehr, I.L. and Saidman, S.B., React. Funct. Polym., 2008, 68: 1152CrossRefGoogle Scholar
  13. 13.
    Aeiyach, S., Zaid, B. and Lacaze, P.C., Electrochim. Acta, 1999, 44: 2889CrossRefGoogle Scholar
  14. 14.
    Prissanaroon, W., Brack, N., Pigram, P.J. and Liesegang, J., Synth. Met., 2004, 142: 25CrossRefGoogle Scholar
  15. 15.
    Yang, R., Naoi, K., Evans, D.F. and Smyrl, W.H., Langmuir, 1991, 7: 556CrossRefGoogle Scholar
  16. 16.
    Tsuneo, A. and Song, Y.L., “Electromagnetic interference and electromagnetic compatibility” (in Chinese), Measurement Press, Beijing, 1985, p.151Google Scholar
  17. 17.
    Kim, M.S., Kim, H.K., Byun, S.W., Jeong, S.H., Hong, Y.K., Joo, J.S., Song, K.T., Kim, J.K., Lee, C.J. and Lee, J.Y., Synth. Met., 2002, 126: 233CrossRefGoogle Scholar
  18. 18.
    Qiu, Y.J. and Reynolds, J.R., Polym. Eng. Sci., 1991, 31: 417CrossRefGoogle Scholar
  19. 19.
    Karim, M.R., Lee, C.J. and Lee, M.S., Polym. Adv. Technol., 2007, 18: 916CrossRefGoogle Scholar
  20. 20.
    Liu, Y.C. and Hwang, B.J., J. Electroanal. Chem., 2001, 501: 100CrossRefGoogle Scholar
  21. 21.
    Erlandsson, R., Inganas, O., Lundstron, I. and Salaneck, W.R., Synth. Met., 1985, 10: 303CrossRefGoogle Scholar
  22. 22.
    Mathys, G.I. and Troung, V.T., Synth. Met., 1997, 89:103CrossRefGoogle Scholar
  23. 23.
    Moreno, J.D., Marcos, M.L., Agulló-Rueda, F., Guerrero-Lemus, R., Martín-Palma, R.J. and Martínez-Duart, J.M., Thin Solid Film, 1999, 348: 152CrossRefGoogle Scholar
  24. 24.
    Christensen, P.A. and Hamnet, A., Electrochim. Acta, 1991, 36: 1263CrossRefGoogle Scholar
  25. 25.
    Pfluger, P. and Street, G.B., J. Chem. Phys., 1984, 80: 544CrossRefGoogle Scholar
  26. 26.
    Neoh, K.G., Kang, E.T. and Tan, K.L., J. Phys. Chem. B, 1997, 101: 726CrossRefGoogle Scholar
  27. 27.
    Tan, K.L., Tan, B.T.G., Kang, E.T. and Neoh, K.G., J. Mater. Sci., 1992, 27: 4056CrossRefGoogle Scholar
  28. 28.
    Dhawan, S.K., Singh, N. and Venkatachalam, S., Synth. Met., 2002, 129: 261CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yong-sheng Qiao
    • 1
    • 2
  • La-zhen Shen (沈腊珍)
    • 2
  • Tao Dou
    • 1
  • Ming Hu
    • 3
  1. 1.Institute of Special ChemicalsTaiyuan University of TechnologyTaiyuanChina
  2. 2.School of Chemistry and Chemical EngineeringShanxi Datong UniversityDatongChina
  3. 3.School of Electronic Information EngineeringTianjin UniversityTianjinChina

Personalised recommendations