Chinese Journal of Polymer Science

, Volume 28, Issue 4, pp 573–580 | Cite as

Dehydration kinetics of polyvinyl alcohol hydrogel wound dressings during wound healing process

  • Mohammad SirousazarEmail author
  • Mortaza Yari


The hydrogel wound dressing based on polyvinyl alcohol (PVA) was prepared by the freezing-thawing cyclic method. The dehydration kinetics of prepared hydrogels was determined using the experimental method and mathematical modeling based on diffusion mechanism. The results show that the dehydration rate of PVA hydrogel wound dressing inversely depends on the hydrogel thickness as well as water content of the wound. On the other hand, the initial water content of hydrogel and the atmospheric humidity have little direct effect on the dehydration rate. The good agreement between experimental and mathematical modeling results in early stages of dehydration process shows that the predominate factor determining the dehydration of these wound dressings is diffusion.


Polymer gels Wound dressing Polyvinyl alcohol Dehydration kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, M., Xu, L., Hu, H., Zhai, M., Peng, J., Nho, Y., Li, J. and Wei, G., Nucl. Instrum. Methods Phys. Res., Sect. B, 2007, 265: 385CrossRefGoogle Scholar
  2. 2.
    Kokabi, M., Sirousazar, M. and Hassan, Z.M., Eur. Polym. J., 2007 43: 773CrossRefGoogle Scholar
  3. 3.
    Purna, S.K. and Babu, M., Burns, 2000, 26: 54CrossRefGoogle Scholar
  4. 4.
    Kannon, G.A. and Garrett, A.B., Dermatol. Surg., 1995, 21: 583CrossRefGoogle Scholar
  5. 5.
    Higa, O.Z., Rogero, S.O., Machado, L.D.B., Mathor, M.B. and Lugao, A.B., Radiat. Phys. Chem., 1999, 55: 705CrossRefGoogle Scholar
  6. 6.
    Yoshii, F., Makuuchi, K., Darwis, D., Iriawan, T., Razzak, M.T. and Rosiak, J.M., Radiat. Phys. Chem., 1995, 46: 169CrossRefGoogle Scholar
  7. 7.
    Yoshii, F., Zhanshan, Y., Isobe, K., Shiozaki, K. and Makunchi, K., Radiat. Phys. Chem., 1999, 55: 133CrossRefGoogle Scholar
  8. 8.
    Razzak, M.T., Darwis, D. and Sukirno, Z., Radiat. Phys. Chem., 2001, 62: 107CrossRefGoogle Scholar
  9. 9.
    Varshney, L., Nucl. Instrum. Methods Phys. Res., Sect. B, 2007, 255: 343CrossRefGoogle Scholar
  10. 10.
    Hong, K.H., Polym. Eng. Sci., 2007, 47: 43CrossRefGoogle Scholar
  11. 11.
    Gupta, A., Kumar, R., Upadhyay, N.K., Surekha, P. and Roy, P.K., J. Appl. Polym. Sci., 2009, 111: 1400CrossRefGoogle Scholar
  12. 12.
    Peppas, N.A., Polym. Prepr., 1977, 1: 794Google Scholar
  13. 13.
    Peppas, N.A., Makromol. Chem., 1975, 176: 3433CrossRefGoogle Scholar
  14. 14.
    Staufer, S.R. and Peppas, N.A., Polymer, 1992, 33: 3932CrossRefGoogle Scholar
  15. 15.
    Hernandez, R., Lopez, D., Mijangos, C. and Guenet, J.M., Polymer, 2002, 43: 5661CrossRefGoogle Scholar
  16. 16.
    Lugao, A.B., Machado, L.D.B., Miranda, L.F., Alvarez, M.R. and Rosiak, J.M., Radiat. Phys. Chem., 1998, 52: 319CrossRefGoogle Scholar
  17. 17.
    Sirousazar, M., Kokabi, M. and Yari, M., Iran J. Pharm. Sci., 2008, 4: 51Google Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Faculty of Chemical EngineeringUrmia University of TechnologyUrmiaIran
  2. 2.Polymer Engineering Group, Faculty of EngineeringTarbiat Modares UniversityTehranIran
  3. 3.Mechanical Engineering Group, Faculty of EngineeringUniversity of Mohaghegh ArdabiliArdabilIran

Personalised recommendations