Review of English literature on figurative language applied to social networks

  • María del Pilar Salas-Zárate
  • Giner Alor-HernándezEmail author
  • José Luis Sánchez-Cervantes
  • Mario Andrés Paredes-Valverde
  • Jorge Luis García-Alcaraz
  • Rafael Valencia-García
Survey Paper


For a long time, figurative language was studied merely from linguistic perspectives, yet it has lately captured the attention of other fields, such as natural language processing, sentiment analysis, and machine learning. The increasing interest in figurative language calls for a clear overview of figurative language research. To address this need, we present a review of English literature on figurative language applied to social networks in a five-year period: from 2013 to 2017. The aim of this review is to identify the most commonly researched figurative devices, as well as their discriminant features, detection approaches and methods, and languages in which they are studied. To this end, we analyze and evaluate 521 research works and present 45 primary studies. The results show that sarcasm is the most studied figurative device, with 56% of the total frequencies. Also, 87% of the studies are based on the supervised machine learning approach, and the support vector machine classifier has been the most used to detect the different types of figurative language (i.e., figurative devices). Similarly, more than half of the literature focuses on figurative language in English.


Figurative language Social networks Literature review 



Authors María del Pilar Salas-Zárate and Mario Andrés Paredes-Valverde are supported by the National Council of Science and Technology (CONACYT), the Secretariat of Public Education (SEP), and the Mexican government. Additionally, this work was supported by Tecnológico Nacional de Mexico (TecNM) and the Secretariat of Public Education (SEP) through PRODEP (Programa para el Desarrollo Profesional Docente).


  1. 1.
    Reyes Pérez A (2012) Linguistic-based patterns for figurative language processing: the case of humor recognition and irony detection. Dissertation, Universitat Politècnica de ValènciaGoogle Scholar
  2. 2.
    Khokhlova M, Patti V, Rosso P (2016) Distinguishing between irony and sarcasm in social media texts: Linguistic observations. In: International FRUCT conference on intelligence, social media and web (ISMW FRUCT). IEEE, pp 1–6Google Scholar
  3. 3.
    Campbell JD, Katz AN (2012) Are there necessary conditions for inducing a sense of sarcastic irony? Discourse Process 49:459–480. CrossRefGoogle Scholar
  4. 4.
    Camp E (2012) Sarcasm, pretense, and the semantics/pragmatics distinction. Noûs 46:587–634. CrossRefGoogle Scholar
  5. 5.
    Eisterhold J, Attardo S, Boxer D (2006) Reactions to irony in discourse: evidence for the least disruption principle. J Pragmat 38:1239–1256. CrossRefGoogle Scholar
  6. 6.
    Bosco C, Patti V, Bolioli A (2013) Developing corpora for sentiment analysis: the case of irony and senti-TUT. IEEE Intell Syst 28:55–63. CrossRefGoogle Scholar
  7. 7.
    Sulis E, Irazú Hernández Farías D, Rosso P, Patti V, Ruffo G (2016) Figurative messages and affect in Twitter: differences between #irony, #sarcasm and #not. Knowl Based Syst 108:132–143. CrossRefGoogle Scholar
  8. 8.
    Ghosh A, Li G, Veale T, Shutova E (2015) Semeval-2015 task 11: sentiment analysis of figurative language in twitter. In: Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015), pp 470–478Google Scholar
  9. 9.
    Reyes A, Rosso P (2012) Making objective decisions from subjective data: detecting irony in customer reviews. Decis Support Syst 53:754–760. CrossRefGoogle Scholar
  10. 10.
    Reyes A, Rosso P, Buscaldi D (2012) From humor recognition to irony detection: the figurative language of social media. Data Knowl Eng 74:1–12. CrossRefGoogle Scholar
  11. 11.
    Benamara F, Grouin C, Karoui J (2017) Analyse d’opinion et langage figuratif dans des tweets : présentation et résultats du Défi Fouille de Textes DEFT2017. In: 24e Conférence sur le Traitement Automatique des Langues Naturelles (TALN), pp 1–12Google Scholar
  12. 12.
    Berger M (1998) The nonuse of figurative language in conduct disordered adolescents. Utah State University, LoganGoogle Scholar
  13. 13.
    Glazkova A, Ganzherli N, Mikhalkova E (2019) UTMN at HAHA@IberLEF2019: recognizing humor in Spanish tweets using hard parameter sharing for neural networks. In: Iberian Languages Evaluation Forum (IberLEF 2019)Google Scholar
  14. 14.
    Recupero DR, Dragoni M, Buscaldi D, Alam M, Cambria E (2018) EMSASW2018. In: 4th Workshop on sentic computing, sentiment analysis, opinion mining, and emotion detectionGoogle Scholar
  15. 15.
    Ortega. A, Lleida E, San Segundo R, Ferreiros J, Hurtado L, Sanchis E, Torres MI, Justo R (2018) AMIC: affective multimedia analytics with inclusive and natural communication. [Sociedad Española para el Procesamiento del Lenguaje Natural]Google Scholar
  16. 16.
    Reyes A (2013) Linguistic-based patterns for figurative language processing: the case of humor recognition and irony detection. Sociedad Española para el Procesamiento del Lenguaje NaturalGoogle Scholar
  17. 17.
    Joshi A, Bhattacharyya P, Carman MJ (2016) Automatic sarcasm detection: a survey. ACM Comput Surv 10:1–8Google Scholar
  18. 18.
    Wallace BC (2015) Computational irony: a survey and new perspectives. Artif Intell Rev 43:467–483. CrossRefGoogle Scholar
  19. 19.
    Wicana SG, Ibisoglu TY, Yavanoglu U (2017) A review on sarcasm detection from machine-learning perspective. In: IEEE 11th international conference on semantic computing (ICSC). IEEE, pp 469–476Google Scholar
  20. 20.
    Brereton P, Kitchenham BA, Budgen D, Turner M, Khalil M (2007) Lessons from applying the systematic literature review process within the software engineering domain. J Syst Softw 80:571–583. CrossRefGoogle Scholar
  21. 21.
    Figueroa C, Vagliano I, Rocha OR, Morisio M (2015) A systematic literature review of linked data-based recommender systems. Concurr Comput Pract Exp 27:4659–4684. CrossRefGoogle Scholar
  22. 22.
    Wen J, Li S, Lin Z, Hu Y, Huang C (2012) Systematic literature review of machine learning based software development effort estimation models. Inf Softw Technol 54:41–59. CrossRefGoogle Scholar
  23. 23.
    Liebrecht CC, Kunneman FA, Bosch APJ van den (2013) The perfect solution for detecting sarcasm in tweets #not. In: Proceedings of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. New Brunswick, NJ: ACL, Atlanta, Georgia, pp 29–37Google Scholar
  24. 24.
    Ghosh D, Guo W, Muresan S (2015) Sarcastic or not: word embeddings to predict the literal or sarcastic meaning of words. In: Proceedings of the 2015 conference on empirical methods in natural language processing. Association for Computational Linguistics, Stroudsburg, PA, USA, pp 1003–1012Google Scholar
  25. 25.
    Khattri A, Joshi A, Bhattacharyya P, Carman M (2015) Your sentiment precedes you: using an author’s historical tweets to predict sarcasm. In: Proceedings of the 6th workshop on computational approaches to subjectivity, sentiment and social media analysis. Association for Computational Linguistics, Stroudsburg, PA, USA, pp 25–30Google Scholar
  26. 26.
    Charalampakis B, Spathis D, Kouslis E, Kermanidis K (2015) Detecting irony on greek political tweets. In: Proceedings of the 16th international conference on engineering applications of neural networks (INNS)—EANN’15. ACM Press, New York, pp 1–5Google Scholar
  27. 27.
    Bouazizi M, Otsuki Ohtsuki T (2016) A pattern-based approach for sarcasm detection on twitter. IEEE Access 4:5477–5488. CrossRefGoogle Scholar
  28. 28.
    Barberi F, Ronzano F, Saggion Horacio (2015) Do we criticise (and laugh) in the same way? automatic detection of multi-lingual satirical news in twitter. In: Proceedings of the 24th international conference on artificial intelligence. The Association for the Advancement of Artificial Intelligence Press, Buenos Aires, pp 1215–1221Google Scholar
  29. 29.
    Amir S, Wallace BC, Lyu H, Paula C, Silva MJ (2016) Modelling context with user embeddings for sarcasm detection in social media. In: Conference on computational natural language learning (CONLL 2016). pp 1–11Google Scholar
  30. 30.
    Sulis E, Irazú Hernández Farías D, Rosso P, Patti V, Ruffo G (2016) Figurative messages and affect in Twitter: differences between #irony, #sarcasm and #not. Knowl Based Syst 108:132–143. CrossRefGoogle Scholar
  31. 31.
    Charalampakis B, Spathis D, Kouslis E, Kermanidis K (2016) A comparison between semi-supervised and supervised text mining techniques on detecting irony in greek political tweets. Eng Appl Artif Intell 51:50–57. CrossRefGoogle Scholar
  32. 32.
    Reyes A, Rosso P, Veale T (2013) A multidimensional approach for detecting irony in Twitter. Lang Resour Eval 47:239–268. CrossRefGoogle Scholar
  33. 33.
    Hernańdez Farías DI, Patti V, Rosso P (2016) Irony detection in twitter: the role of affective content. ACM Trans Internet Technol 16:1–24. CrossRefGoogle Scholar
  34. 34.
    Nguyen HL, Jung JE (2017) Statistical approach for figurative sentiment analysis on social networking services: a case study on twitter. Multimed Tools Appl 76:8901–8914. CrossRefGoogle Scholar
  35. 35.
    de Freitas LA, Vanin AA, Hogetop DN, Bochernitsan MN, Vieira R (2014) Pathways for irony detection in tweets. In: Proceedings of the 29th annual ACM symposium on applied computing—SAC’14. ACM Press, New York, pp 628–633Google Scholar
  36. 36.
    Fersini E, Pozzi FA, Messina E (2015) Detecting irony and sarcasm in microblogs: the role of expressive signals and ensemble classifiers. In: IEEE international conference on data science and advanced analytics (DSAA). IEEE, pp 1–8Google Scholar
  37. 37.
    Thu PP, New N (2017) Impact analysis of emotion in figurative language. In: IEEE/ACIS 16th international conference on computer and information science (ICIS). IEEE, pp 209–214Google Scholar
  38. 38.
    Ling J, Klinger R (2016) An empirical, quantitative analysis of the differences between sarcasm and irony. Springer, Cham, pp 203–216Google Scholar
  39. 39.
    Hernández-Farías I, Benedí J-M, Rosso P (2015) Applying basic features from sentiment analysis for automatic irony detection, pp 337–344CrossRefGoogle Scholar
  40. 40.
    Jasso G, Meza I (2016) Character and word baselines systems for irony detection in Spanish short texts. Proces del Leng Nat 56:41–48Google Scholar
  41. 41.
    Barberi F, Saggion H (2014) Modelling irony in twitter: feature analysis and evaluation. In: LREC 2014: ninth international conference on language resources and evaluation. European Language Resources Association (ELRA), Reykjavik, pp 4258–4264Google Scholar
  42. 42.
    Barbieri F, Ronzano F, Saggion H (2014) Italian irony detection in twitter: a first approach. In: The first Italian conference on computational linguistics CLiC-it 2014 and the fourth international workshop EVALITA, pp 28–32Google Scholar
  43. 43.
    Barbieri F, Saggion H (2014) Automatic detection of irony and humour in twitter. In: ICCC, pp 155–162Google Scholar
  44. 44.
    Kunneman F, Liebrecht C, van Mulken M, van den Bosch A (2015) Signaling sarcasm: from hyperbole to hashtag. Inf Process Manag 51:500–509. CrossRefGoogle Scholar
  45. 45.
    Mukherjee S, Bala PK (2017) Sarcasm detection in microblogs using Naïve Bayes and fuzzy clustering. Technol Soc 48:19–27. CrossRefGoogle Scholar
  46. 46.
    Muresan S, Gonzalez-Ibanez R, Ghosh D, Wacholder N (2016) Identification of nonliteral language in social media: a case study on sarcasm. J Assoc Inf Sci Technol 67:2725–2737. CrossRefGoogle Scholar
  47. 47.
    Bouazizi M, Ohtsuki T (2015) Opinion mining in twitter how to make use of sarcasm to enhance sentiment analysis. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015—ASONAM’15. ACM Press, New York, pp 1594–1597Google Scholar
  48. 48.
    Rajadesingan A, Zafarani R, Liu H (2015) Sarcasm detection on twitter. In: Proceedings of the eighth ACM international conference on web search and data mining—WSDM’15. ACM Press, New York, pp 97–106Google Scholar
  49. 49.
    Wang Z, Wu Z, Wang R, Ren Y (2015) Twitter sarcasm detection exploiting a context-based model. In: Proceedings, part I, of the 16th international conference on web information systems engineering—WISE 2015, vol 9418. Springer, New York, pp 77–91Google Scholar
  50. 50.
    Bouazizi M, Ohtsuki T (2015) Sarcasm detection in twitter: “all your products are incredibly amazing!!!”—Are they really? In: IEEE global communications conference (GLOBECOM). IEEE, pp 1–6Google Scholar
  51. 51.
    Lunando E, Purwarianti A (2013) Indonesian social media sentiment analysis with sarcasm detection. In: International conference on advanced computer science and information systems (ICACSIS). IEEE, pp 195–198Google Scholar
  52. 52.
    Dave AD, Desai NP (2016) A comprehensive study of classification techniques for sarcasm detection on textual data. In: International conference on electrical, electronics, and optimization techniques (ICEEOT). IEEE, pp 1985–1991Google Scholar
  53. 53.
    Tayal DK, Yadav S, Gupta K, Rajput B, Kumari K (2014) Polarity detection of sarcastic political tweets. In: International conference on computing for sustainable global development (INDIACom). IEEE, pp 625–628Google Scholar
  54. 54.
    Weitzel L, Prati RC, Aguiar RF (2016) The comprehension of figurative language: what is the influence of irony and sarcasm on NLP techniques? In: Pedrycz W, ChenShyi-Ming (eds) Sentiment Analysis and Ontology Engineering. Springer International Publishing, pp 49–74Google Scholar
  55. 55.
    Onan A (2017) Sarcasm identification on twitter: a machine learning approach. In: Artificial intelligence trends in intelligent systems, pp 374–383Google Scholar
  56. 56.
    Bamman D, Smith NA (2015) Contextualized sarcasm detection on twitter. In: Ninth international AAAI conference on web and social media, pp 574–577Google Scholar
  57. 57.
    Ptácek T, Habernal I, Hong J, Ptácek T, Habernal I, Hong J (2014) Sarcasm detection on Czech and English twitter, pp 213–223Google Scholar
  58. 58.
    Altrabsheh N, Cocea M, Fallahkhair S (2015) Detecting sarcasm from students’ feedback in twitter. Springer, Cham, pp 551–555Google Scholar
  59. 59.
    Bharti SK, Pradhan R, Babu KS, Jena SK (2017) Sarcasm analysis on twitter data using machine learning approaches. Springer, Berlin, pp 51–76Google Scholar
  60. 60.
    Saha S, Yadav J, Ranjan P (2017) Proposed approach for sarcasm detection in twitter. Indian J Sci Technol 8Google Scholar
  61. 61.
    Zhang M, Zhang Y, Fu G (2016) Tweet sarcasm detection using deep neural network. In: COLING, pp 2449–2460Google Scholar
  62. 62.
    Jain S, Hsu V (2015) The lowest form of wit: identifying sarcasm in social mediaGoogle Scholar
  63. 63.
    del Pilar Salas-Zárate M, Paredes-Valverde MA, Rodriguez-García MÁ, Valencia-García R, Alor-Hernández G (2017) Automatic detection of satire in twitter: a psycholinguistic-based approach. Knowl Based Syst 128:20–33. CrossRefGoogle Scholar
  64. 64.
    Reganti AN, Maheshwari T, Kumar U, Das A, Bajpai R (2016) Modeling satire in English text for automatic detection. In: IEEE 16th International conference on data mining workshops (ICDMW). IEEE, pp 970–977Google Scholar
  65. 65.
    Barberi F, Ronzano F, Saggion H (2015) Is this tweet satirical? A computational approach for satire detection in Spanish. Proces del Leng Nat 55:135–142Google Scholar
  66. 66.
    Zhang R, Liu N (2014) Recognizing humor on twitter. In: Proceedings of the 23rd ACM international conference on conference on information and knowledge management—CIKM’14. ACM Press, New York, pp 889–898Google Scholar
  67. 67.
    Whissell C (2009) Using the revised dictionary of affect in language to quantify the emotional undertones of samples of natural language. Psychol Rep 105:509–521. CrossRefGoogle Scholar
  68. 68.
    Burgers C, van Mulken M, Schellens PJ (2012) Verbal irony. J Lang Soc Psychol 31:290–310. CrossRefGoogle Scholar
  69. 69.
    Xu H, Santus E, Laszlo A, Huang C-R (2015) LLT-PolyU: Identifying sentiment intensity in ironic tweets. In: SemEval@ NAACL-HLT, pp 673–678Google Scholar
  70. 70.
    Cliche M (2017) BB_twtr at SemEval-2017 task 4: twitter sentiment analysis with CNNs and LSTMsGoogle Scholar
  71. 71.
    Dario S, Gjorgji S, MadjarovIvica D, Dimitrovski I (2015) UNITN: training deep convolutional neural network for twitter sentiment classification. In: Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015). Denver, Colorado, pp 464–469Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tecnológico Nacional de México/I. T. OrizabaOrizabaMexico
  2. 2.CONACYT-Tecnológico Nacional de México/I. T. OrizabaOrizabaMexico
  3. 3.Department of Industrial EngineeringUniversidad Autónoma de Ciudad JuárezCiudad JuárezMexico
  4. 4.Departamento de Informática y SistemasUniversidad de MurciaMurciaSpain

Personalised recommendations