Advertisement

k-Degree anonymity on directed networks

  • Jordi Casas-RomaEmail author
  • Julián Salas
  • Fragkiskos D. Malliaros
  • Michalis Vazirgiannis
Regular Paper

Abstract

In this paper, we consider the problem of anonymization on directed networks. Although there are several anonymization methods for networks, most of them have explicitly been designed to work with undirected networks and they cannot be straightforwardly applied when they are directed. Moreover, ignoring the direction of the edges causes important information loss on the anonymized networks in the best case. In the worst case, the direction of the edges may be used for reidentification, if it is not considered in the anonymization process. Here, we propose two different models for k-degree anonymity on directed networks, and we also present algorithms to fulfill these k-degree anonymity models. Given a network G, we construct a k-degree anonymous network by the minimum number of edge additions. Our algorithms use multivariate micro-aggregation to anonymize the degree sequence, and then, they modify the graph structure to meet the k-degree anonymous sequence. We apply our algorithms to several real datasets and demonstrate their efficiency and practical utility.

Keywords

Anonymity Social networks Directed networks Data utility Privacy 

Notes

Acknowledgements

Jordi Casas-Roma was partially supported by the Spanish MCYT and the FEDER funds under Grants TIN2011-27076-C03 “CO-PRIVACY” and TIN2014-57364-C2-2-R “SMARTGLACIS”. Julián Salas acknowledges the support of a UOC postdoctoral fellowship and TIN2014-57364-C2-2-R “SMARTGLACIS”.

References

  1. 1.
    Adamic LA, Glance N (2005) The political blogosphere and the 2004 US election: divided they blog. In: LinkKDD ’05. ACM, Chicago, Illinois, USA, pp 36–43Google Scholar
  2. 2.
    Backstrom L, Dwork C, Kleinberg J (2007) Wherefore art thou r3579x?: anonymized social networks, hidden patterns, and structural steganography In: WWW ’07. ACM, New York, NY, USA, pp 181–190Google Scholar
  3. 3.
    Bhagat S, Cormode G, Krishnamurthy B, Srivastava D (2009) Class-based graph anonymization for social network data In: VLDB ’09, vol 2, no 1, pp 766–777Google Scholar
  4. 4.
    Bredereck R, Froese V, Koseler M, Millani M.G, Nichterlein A, Niedermeier R (2017) A Parameterized algorithmics framework for degree sequence completion problems in directed graphs. In: Proceedings of the 11th international symposium on parameterized and exact computation (IPEC ’16). Schloss Dagstuhl - Leibniz-Zentrum fr Informatik, pp 10:1–10:14Google Scholar
  5. 5.
    Bredereck R, Froese V, Koseler M, Millani M.G, Nichterlein A, Niedermeier R (2018) A parameterized algorithmics framework for digraph degree sequence completion problems. arXiv:1604.06302v3
  6. 6.
    Cai BJ, Wang HY, Zheng HR, Wang H (2010) Evaluation repeated random walks in community detection of social networks In: ICMLC’10. IEEE, Qingdao, China, pp 1849–1854Google Scholar
  7. 7.
    Casas-Roma J, Herrera-Joancomartí J, Torra V (2013) An algorithm for \(k\)-degree anonymity on large networks. In: ASONAM ’13. IEEE, NiagaraFalls, ON, Canada, pp 671–675Google Scholar
  8. 8.
    Casas-Roma J, Herrera-Joancomartí J, Torra V (2015) Anonymizing graphs: measuring quality for clustering. Knowl Inf Syst 44(3):507–528CrossRefGoogle Scholar
  9. 9.
    Casas-Roma J (2015) An evaluation of edge modification techniques for privacy-preserving on graphs. In: MDAI ’15. Springer, Skövde, Sweden, pp 180–191Google Scholar
  10. 10.
    Casas-Roma J, Herrera-Joancomartí J, Torra V (2017) k-Degree anonymity and edge selection: improving data utility in large networks. Knowl Inf Syst 50(2):447–474CrossRefGoogle Scholar
  11. 11.
    Chester S, Kapron BM, Ramesh G, Srivastava G, Thomo A, Venkatesh S (2013) Why Waldo befriended the dummy? \(k\)-Anonymization of social networks with pseudo-nodes. Soc Netw Anal Min 3(3):381–399.  https://doi.org/10.1007/s13278-012-0084-6 CrossRefGoogle Scholar
  12. 12.
    Clarkson KL, Liu K, Terzi E (2010) Towards identity anonymization in social networks. In: Yu P, Han J, Faloutsos C (eds) Link mining: models, algorithms, and applications. Springer, New York, pp 359–385Google Scholar
  13. 13.
    Cormode G, Srivastava D, Yu T, Zhang Q (2010) Anonymizing bipartite graph data using safe groupings. VLDB J 19(1):115–139CrossRefGoogle Scholar
  14. 14.
    Das S, Egecioglu Ö, Abbadi A (2010) Anonymizing weighted social network graphs In: ICDE ’10. IEEE, Long Beach, CA, USA, pp 904–907Google Scholar
  15. 15.
    Domingo-Ferrer J, Torra V (2005) Ordinal, continuous and heterogeneous \(k\)-anonymity through microaggregation. Data Min Knowl Discov 11(2):195–212MathSciNetCrossRefGoogle Scholar
  16. 16.
    Domingo-Ferrer J, Mateo-Sanz JM (2002) Practical data-oriented microaggregation for statistical disclosure control. IEEE Trans Knowl Data Eng 14(1):189–201CrossRefGoogle Scholar
  17. 17.
    Ferri F, Grifoni P, Guzzo T (2011) New forms of social and professional digital relationships: the case of Facebook. Soc Netw Anal Min 2(2):121–137CrossRefGoogle Scholar
  18. 18.
    Hanhijärvi S, Garriga GC, Puolamäki K (2009) Randomization techniques for graphs. In: SDM ’09. SIAM, Sparks, Nevada, USA, pp 780–791Google Scholar
  19. 19.
    Hansen SL, Mukherjee S (2003) A polynomial algorithm for optimal univariate microaggregation. IEEE Trans Knowl Data Eng 15(4):1043–1044CrossRefGoogle Scholar
  20. 20.
    Hartung S, Hoffmann C, Nichterlein A (2014) Improved upper and lower bound heuristics for degree anonymization in social networks. In: SEA’14. Springer, Copenhagen, Denmark, pp 376–387Google Scholar
  21. 21.
    Hartung S, Nichterlein A, Niedermeier R, Suchý O (2015) A refined complexity analysis of degree anonymization in graphs. Inf Comput 243:249–262MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hay M, Miklau G, Jensen D, Towsley D, Weis P (2008) Resisting structural re-identification in anonymized social networks In: VLDB ’08, vol 1, no 1, pp 102–114Google Scholar
  23. 23.
    Liu L, Wang J, Liu J, Zhang J (2009) Privacy preservation in social networks with sensitive edge weights. In: SDM ’09. SIAM, Sparks, Nevada, USA, pp 954–965Google Scholar
  24. 24.
    Liu K, Terzi E (2008) Towards identity anonymization on graphs. In: SIGMOD ’08. ACM, New York, NY, USA, pp 93–106Google Scholar
  25. 25.
    Ley M (2002) The DBLP computer science bibliography: evolution, research issues, perspectives. In: SPIRE 2002. Springer, London, pp 1–10Google Scholar
  26. 26.
    Leskovec J, Huttenlocher D, Kleinberg J (2010) Predicting positive and negative links in online social networks. In: WWW ’10. ACM, Raleigh, North Carolina, USA, pp 641–650Google Scholar
  27. 27.
    Lu X, Song Y, Bressan S (2012) Fast identity anonymization on graphs. In: DEXA ’12. Springer, Vienna, Austria, pp 281–295Google Scholar
  28. 28.
    Opsahl T, Panzarasa P (2009) Clustering in weighted networks. Soc Netw 31(2):155–163CrossRefGoogle Scholar
  29. 29.
    Pons P, Latapy M (2005) Computing communities in large networks using random walks. Lecture notes in computer science (LNCS), vol 3733, pp 284–293Google Scholar
  30. 30.
    Richardson M, Agrawal R, Domingos P (2003) Trust management for the semantic web. In: ISWC, pp 351–368Google Scholar
  31. 31.
    Rossi L, Musolesi M, Torsello A (2015) On the \(k\)-anonymization of time-varying and multi-layer social graphs. In: ICWSM, pp 377–386Google Scholar
  32. 32.
    Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci USA 105(4):1118–1123CrossRefGoogle Scholar
  33. 33.
    Salas J, Torra V (2016) Improving the characterization of P-stability for applications in network privacy. Discrete Appl Math 206:109–114MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Salas J (2016) Faster univariate microaggregation for power law distributions: \(k\)-degree-anonymity for big graphs In: ICDM workshop on privacy and discrimination in data mining. IEEE, Barcelona, SpainGoogle Scholar
  35. 35.
    Samarati P (2001) Protecting respondents identities in microdata release. IEEE Trans Knowl Data Eng 13(6):1010–1027CrossRefGoogle Scholar
  36. 36.
    Sweeney L (2002) \(k\)-anonymity: a model for protecting privacy. Int J Uncertain Fuzziness Knowl Based Syst 10(5):557–570MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Takac L, Zabovsky M (2012) Data analysis in public social networks in international scientific conference and international workshop present day trends of innovations. Lomza, Poland, pp 1–6Google Scholar
  38. 38.
    Zhou B, Pei J (2008) Preserving privacy in social networks against neighborhood attacks in ICDE ’08. IEEE, Washington, DC, USA, pp 506–515Google Scholar
  39. 39.
    Zhou B, Pei J (2011) The \(k\)-anonymity and \(\ell \)-diversity approaches for privacy preservation in social networks against neighborhood attacks. Knowl Inf Syst 28(1):47–77CrossRefGoogle Scholar
  40. 40.
    Zou L, Chen L, Özsu MT (2009) \(K\)-Automorphism: a general framework for privacy preserving network publication. In: VLDB ’09, vol 2, no 1, pp 946–957Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Computer Science, Multimedia and TelecommunicationsUniversitat Oberta de Catalunya (UOC)BarcelonaSpain
  2. 2.Internet Interdisciplinary Institute (IN3)Universitat Oberta de Catalunya (UOC)CastelldefelsSpain
  3. 3.Center for Cybersecurity Research of Catalonia (CYBERCAT)BarcelonaSpain
  4. 4.CentraleSupélec, University of Paris-SaclayGif-sur-YvetteFrance
  5. 5.Inria SaclayPalaiseauFrance
  6. 6.École PolytechniquePalaiseauFrance
  7. 7.Athens University of Economics and BusinessAthensGreece

Personalised recommendations