Advertisement

Knowledge and Information Systems

, Volume 58, Issue 1, pp 59–81 | Cite as

EigenRec: generalizing PureSVD for effective and efficient top-N recommendations

  • Athanasios N. NikolakopoulosEmail author
  • Vassilis Kalantzis
  • Efstratios Gallopoulos
  • John D. Garofalakis
Regular Paper

Abstract

We introduce EigenRec, a versatile and efficient latent factor framework for top-N recommendations that includes the well-known PureSVD algorithm as a special case. EigenRec builds a low-dimensional model of an inter-item proximity matrix that combines a similarity component, with a scaling operator, designed to control the influence of the prior item popularity on the final model. Seeing PureSVD within our framework provides intuition about its inner workings, exposes its inherent limitations, and also, paves the path toward painlessly improving its recommendation performance. A comprehensive set of experiments on the MovieLens and the Yahoo datasets based on widely applied performance metrics, indicate that EigenRec outperforms several state-of-the-art algorithms, in terms of Standard and Long-Tail recommendation accuracy, exhibiting low susceptibility to sparsity, even in its most extreme manifestations—the Cold-Start problems. At the same time, EigenRec has an attractive computational profile and it can apply readily in large-scale recommendation settings.

Keywords

Collaborative filtering Top-N recommendation Latent factor methods PureSVD Sparsity Distributed computing 

Notes

Acknowledgements

Vassilis Kalantzis was partially supported by a Gerondelis Foundation Fellowship. The authors acknowledge the Minnesota Supercomputing Institute (http://www.msi.umn.edu) at the University of Minnesota for providing resources that contributed to the research results reported within this paper.

References

  1. 1.
    Anderson C (2008) The long tail: Why the future of business is selling less of more. Hyperion, New YorkGoogle Scholar
  2. 2.
    Aurentz JL, Kalantzis V, Saad Y (2017) Cucheb: a GPU implementation of the filtered Lanczos procedure. Comput Phys Commun 220:332–340CrossRefGoogle Scholar
  3. 3.
    Bai Z, Demmel J, Dongarra J, Ruhe A, van der Vorst H (2000) Templates for the solution of algebraic eigenvalue problems: a practical guide, vol 11. SIAM, PhiladelphiaCrossRefzbMATHGoogle Scholar
  4. 4.
    Balakrishnan S, Chopra S (2012) Collaborative ranking. In: Proceedings of the fifth ACM international conference on Web search and data mining, WSDM ’12. ACM, New York, pp 143–152.  https://doi.org/10.1145/2124295.2124314
  5. 5.
    Blackford LS, Petitet A, Pozo R, Remington K, Whaley RC, Demmel J, Dongarra J, Duff I, Hammarling S, Henry G et al (2002) An updated set of basic linear algebra subprograms (blas). ACM Trans Math Softw 28(2):135–151MathSciNetCrossRefGoogle Scholar
  6. 6.
    Blom K, Ruhe A (2004) A krylov subspace method for information retrieval. SIAM J Matrix Anal Appl 26(2):566–582MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bobadilla J, Ortega F, Hernando A, GutiéRrez A (2013) Recommender systems survey. Knowl. Based Syst 46:109–132.  https://doi.org/10.1016/j.knosys.2013.03.012 CrossRefGoogle Scholar
  8. 8.
    Chebotarev P, Shamis E (1997) The matrix-forest theorem and measuring relations in small social groups. Autom Remote Control 58(9):1505–1514zbMATHGoogle Scholar
  9. 9.
    Chen J, Saad Y (2009) Lanczos vectors versus singular vectors for effective dimension reduction. IEEE Trans Knowl Data Eng 21(8):1091–1103CrossRefGoogle Scholar
  10. 10.
    Cremonesi P, Koren Y, Turrin R (2010) Performance of recommender algorithms on top-n recommendation tasks. In: Proceedings of the fourth ACM conference on Recommender systems, RecSys ’10. ACM, pp 39–46.  https://doi.org/10.1145/1864708.1864721
  11. 11.
    Desrosiers C, Karypis G (2011) A comprehensive survey of neighborhood-based recommendation methods. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) Recommender systems handbook. Springer, US, pp 107–144.  https://doi.org/10.1007/978-0-387-85820-3_4 CrossRefGoogle Scholar
  12. 12.
    Elbadrawy A, Karypis G (2015) User-specific feature-based similarity models for top-n recommendation of new items. ACM Trans Intell Syst Technol 6(3):33:1–33:20.  https://doi.org/10.1145/2700495 CrossRefGoogle Scholar
  13. 13.
    Fouss F, Francoisse K, Yen L, Pirotte A, Saerens M (2012) An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification. Neural Netw 31:53–72CrossRefzbMATHGoogle Scholar
  14. 14.
    Fouss F, Pirotte A, Renders J, Saerens M (2007) Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans Knowl Data Eng 19(3):355–369CrossRefGoogle Scholar
  15. 15.
    Gallopoulos E, Philippe B, Sameh AH (2015) Parallelism in matrix computations, 1st edn. Springer, BerlinzbMATHGoogle Scholar
  16. 16.
    Gantner Z, Drumond L, Freudenthaler C, Rendle S, Schmidt-Thieme L (2010) Learning attribute-to-feature mappings for cold-start recommendations. In: 2010 IEEE 10th international conference on data mining (ICDM), pp 176–185.  https://doi.org/10.1109/ICDM.2010.129
  17. 17.
    Goldberg K, Roeder T, Gupta D, Perkins C (2001) Eigentaste: a constant time collaborative filtering algorithm. Inf Retr 4(2):133–151.  https://doi.org/10.1023/A:1011419012209 CrossRefzbMATHGoogle Scholar
  18. 18.
    Harper FM, Konstan JA (2015) The movielens datasets: history and context. ACM Trans Interact Intell Syst 5(4):19:1–19:19.  https://doi.org/10.1145/2827872 CrossRefGoogle Scholar
  19. 19.
    Huang Z, Chen H, Zeng D (2004) Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Trans Inf Syst 22(1):116–142.  https://doi.org/10.1145/963770.963775 CrossRefGoogle Scholar
  20. 20.
    Joachims T, Swaminathan A, Schnabel T (2017) Unbiased learning-to-rank with biased feedback. In: Proceedings of the tenth ACM international conference on web search and data mining, WSDM ’17. ACM, New York, pp 781–789.  https://doi.org/10.1145/3018661.3018699
  21. 21.
    Kabbur S, Ning X, Karypis G (2013) Fism: factored item similarity models for top-n recommender systems. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining, KDD’13. ACM, New York, pp 659–667.  https://doi.org/10.1145/2487575.2487589
  22. 22.
    Kalantzis V, Li R, Saad Y (2016) Spectral schur complement techniques for symmetric eigenvalue problems. Electron Trans Numer Anal 45:305–329MathSciNetzbMATHGoogle Scholar
  23. 23.
    Koren Y (2008) Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, KDD’08. ACM, New York, pp 426–434.  https://doi.org/10.1145/1401890.1401944
  24. 24.
    Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for recommender systems. Computer 42(8):30–37CrossRefGoogle Scholar
  25. 25.
    Lanczos C (1950) An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. United States Government Press Office, Washington, D.CCrossRefzbMATHGoogle Scholar
  26. 26.
    Nikolakopoulos A, Garofalakis J (2014) NCDREC: a decomposability inspired framework for top-n recommendation. In: 2014 IEEE/WIC/ACM international joint conferences on web intelligence (WI) and intelligent agent technologies (IAT), vol 1, pp 183–190.  https://doi.org/10.1109/WI-IAT.2014.32
  27. 27.
    Nikolakopoulos AN, Kalantzi M, Garofalakis JD (2014) On the use of lanczos vectors for efficient latent factor-based top-n recommendation. In: Proceedings of the 4th international conference on web intelligence, mining and semantics (WIMS14), WIMS ’14. ACM, New York, pp 28:1–28:6.  https://doi.org/10.1145/2611040.2611078
  28. 28.
    Nikolakopoulos AN, Kalantzis V, Gallopoulos E, Garofalakis JD (2017) Factored proximity models for top-n recommendations. In: 2017 IEEE international conference on big knowledge (ICBK), pp 80–87.  https://doi.org/10.1109/ICBK.2017.14
  29. 29.
    Nikolakopoulos AN, Korba A, Garofalakis JD (2016) Random surfing on multipartite graphs. In: 2016 IEEE international conference on big data (big data), pp 736–745.  https://doi.org/10.1109/BigData.2016.7840666
  30. 30.
    Nikolakopoulos AN, Kouneli MA, Garofalakis JD (2015) Hierarchical itemspace rank: exploiting hierarchy to alleviate sparsity in ranking-based recommendation. Neurocomputing 163:126–136.  https://doi.org/10.1016/j.neucom.2014.09.082 CrossRefGoogle Scholar
  31. 31.
    Sarwar B, Karypis G, Konstan J, Riedl J (2000) Application of dimensionality reduction in recommender system-a case study. Tech. rep., DTIC DocumentGoogle Scholar
  32. 32.
    Schnabel T, Swaminathan A, Singh A, Chandak N, Joachims T (2016) Recommendations as treatments: debiasing learning and evaluation. In: Proceedings of the 33rd international conference on international conference on machine learning, ICML’16, vol 48, pp 1670–1679. JMLR.org. http://dl.acm.org/citation.cfm?id=3045390.3045567
  33. 33.
    Shani G, Gunawardana A (2011) Evaluating recommendation systems. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) Recommender systems handbook. Springer, Boston, pp 257–297.  https://doi.org/10.1007/978-0-387-85820-3_8 CrossRefGoogle Scholar
  34. 34.
    Sharma M, Zhou J, Hu J, Karypis G (2015) Feature-based factorized bilinear similarity model for cold-start top-n item recommendation. In: Proceedings of the 2015 SIAM international conference on data mining, SDM’15, pp 190–198.  https://doi.org/10.1137/1.9781611974010.22
  35. 35.
    Snir M, Otto S, Huss-Lederman S, Walker D, Dongarra J (1998) MPI-the complete reference, vol 1: the MPI core, 2nd. (revised) edn. MIT Press, CambridgeGoogle Scholar
  36. 36.
    Takács G, Pilászy I, Németh B, Tikk D (2009) Scalable collaborative filtering approaches for large recommender systems. J Mach Learn Res 10:623–656 http://dl.acm.org/citation.cfm?id=1577069.1577091
  37. 37.
    Wu K, Simon H (2000) Thick-restart lanczos method for large symmetric eigenvalue problems. SIAM J Matrix Anal Appl 22(2):602–616MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Wu L, Romero E, Stathopoulos A (2016) Primme_svds: A high-performance preconditioned svd solver for accurate large-scale computations. arXiv preprint arXiv:1607.01404
  39. 39.
    Wu L, Stathopoulos A (2015) A preconditioned hybrid svd method for accurately computing singular triplets of large matrices. SIAM J Sci Comput 37(5):S365–S388MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Yahoo Webscope Program: Yahoo!R2Music Dataset. https://webscope.sandbox.yahoo.com/
  41. 41.
    Yin H, Cui B, Li J, Yao J, Chen C (2012) Challenging the long tail recommendation. Proc VLDB Endow 5(9):896–907CrossRefGoogle Scholar
  42. 42.
    Zhou D, Bousquet O, Lal TN, Weston J, Schölkopf B (2003) Learning with local and global consistency. In: Thrun S, Saul LK, Schölkopf B (eds) Advances in neural information processing systems 16 [Neural information processing systems, NIPS 2003, 8–13 Dec 2003, Vancouver and Whistler, British Columbia, Canada]. MIT Press, pp 321–328. http://papers.nips.cc/paper/2506-learning-with-local-and-global-consistency

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Digital Technology CenterUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Computer Science and EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Computer Engineering and InformaticsUniversity of PatrasPatrasGreece

Personalised recommendations