Advertisement

Knowledge and Information Systems

, Volume 58, Issue 1, pp 9–34 | Cite as

Connectedness-based subspace clustering

  • Namita JainEmail author
  • C. A. Murthy
Regular Paper
  • 84 Downloads

Abstract

An algorithm for density-based subspace clustering of given data is proposed here. Unlike the existing density-based subspace clustering algorithms which find clusters using spatial proximity, existence of common high-density regions is the condition for grouping of features here. The proposed method is capable of finding subspace clusters based on both linear and nonlinear relationships between features. Unlike existing density-based subspace clustering algorithms, the values of parameters for density estimation need not be provided by the user. These values are calculated for each pair of features using data distribution in space corresponding to the particular pair of features. This allows proposed approach to find subspace clusters where relationship between different features exists at different scales. The performance of proposed algorithm is compared with other subspace clustering methods using artificial and real-life datasets. The proposed method is seen to find subspace clusters embedded in 5 artificial datasets with greater G score. It is also seen that the proposed method is able to find subspace clusters corresponding to known classes in 4 real-life datasets, with greater accuracy.

Keywords

Subspace clustering Density Connectedness Minimal spanning tree 

References

  1. 1.
    Aggarwal CC, Wolf JL, Yu PS, Procopiuc C, Park JS (1999) Fast algorithms for projected clustering. SIGMOD Rec. 28(2):61–72.  https://doi.org/10.1145/304181.304188 Google Scholar
  2. 2.
    Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD Rec. 27(2):94–105.  https://doi.org/10.1145/276305.276314 Google Scholar
  3. 3.
    Aguilar-Ruiz JS (2005) Shifting and scaling patterns from gene expression data. Bioinformatics 21(20):3840–3845.  https://doi.org/10.1093/bioinformatics/bti641 Google Scholar
  4. 4.
    Ahmed HA, Mahanta P, Bhattacharyya DK, Kalita JK (2014) Shifting-and-scaling correlation based biclustering algorithm. IEEE ACM Trans Comput Biol Bioinform 11(6):1239–1252Google Scholar
  5. 5.
    Hochreiter S, Bodenhofer U, Heusel M, Mayr A, Mitterecker A, Kasim A, Khamiakova T, Van Sanden S, Lin D, Talloen W, Bijnens L, Ghlmann HWH, Shkedy Z, Clevert D-A (2010) Fabia: factor analysis for bicluster acquisition. Bioinformatics 26:1520Google Scholar
  6. 6.
    Bergmann S, Ihmels J, Barkai N (2003) Iterative signature algorithm for the analysis of large-scale gene expression. Phys Rev E Stat Nonlinear Soft Matter Phys 67:131902Google Scholar
  7. 7.
    Carmona-Saez P, Pascual-Marqui RD, Tirado F, Carazo JM, Pascual-Montano A (2006) Biclustering of gene expression data by non-smooth non-negative matrix factorization. BMC Bioinform 7(1):78.  https://doi.org/10.1186/1471-2105-7-78 Google Scholar
  8. 8.
    Cheng Y, Church GM (2000) Biclustering of expression data. In: Proceedings of the eighth international conference on intelligent systems for molecular biology. AAAI Press, pp 93–103. http://dl.acm.org/citation.cfm?id=645635.660833
  9. 9.
    Cheung L, Yip KY, Cheung DW, Kao B, Ng MK (2005) On mining micro-array data by order-preserving submatrix. In: 21st International conference on data engineering workshops (ICDEW’05), pp 1153–1153Google Scholar
  10. 10.
    Costeira JP, Kanade T (1998) A multibody factorization method for independently moving objects. Int J Comput Vis 29(3):159–179.  https://doi.org/10.1023/A:1008000628999 Google Scholar
  11. 11.
    Divina F, Aguilar-Ruiz JS (2006) Biclustering of expression data with evolutionary computation. IEEE Trans Knowl Data Eng 18(5):590–602Google Scholar
  12. 12.
    Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the second international conference on knowledge discovery and data mining, KDD’96. AAAI Press, pp 226–231. http://dl.acm.org/citation.cfm?id=3001460.3001507
  13. 13.
    Gallo CA, Carballido JA, Ponzoni I (2009) Bihea: a hybrid evolutionary approach for microarray biclustering, In: Guimarães A, Katia S, Panchenko, Przytycka TM (eds) Proceedings of the advances in bioinformatics and computational biology: 4th Brazilian symposium on bioinformatics, BSB 2009, Porto Alegre, Brazil, July 29–31, 2009. Springer, Berlin, pp 36–47.  https://doi.org/10.1007/978-3-642-03223-3
  14. 14.
    Hartigan JA (1972) Direct clustering of a data matrix. J Am Stat Assoc 67(337):123–129Google Scholar
  15. 15.
    Hassani M, Hansen M (2015) subspace: interface to OpenSubspace. R package version 1.0.4. http://CRAN.R-project.org/package=subspace
  16. 16.
    Jain N, Murthy CA (2016) A new estimate of mutual information based measure of dependence between two variables: properties and fast implementation. Int J Mach Learn Cybern 7(5):857–875.  https://doi.org/10.1007/s13042-015-0418-6 Google Scholar
  17. 17.
    Kailing K, Kriegel H-P, Kröger P (2004) Density-connected subspace clustering for high-dimensional data. In: Proceedings of the SIAM international Conference on data mining (SDM’04), vol 4Google Scholar
  18. 18.
    Kriegel H-P, Kroger P, Renz M, Wurst S (2005) A generic framework for efficient subspace clustering of high-dimensional data. In: Proceedings of the fifth IEEE international conference on data mining, ICDM ’05. IEEE Computer Society, Washington, DC, USA, pp 250–257.  https://doi.org/10.1109/ICDM.2005.5
  19. 19.
    Kriegel H-P, Kröger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. Knowl. Discov. Data 3(1):1:1–1:58.  https://doi.org/10.1145/1497577.1497578 Google Scholar
  20. 20.
    Kriegel H-P, Zimek A (2010) Subspace clustering, ensemble clustering, alternative clustering, multiview clustering: what can we learn from each other? In: Proceedings of the 1st international workshop on discovering, summarizing and using multiple clusterings (MultiClust) held in conjunction with KDDGoogle Scholar
  21. 21.
    Lazzeroni L, Owen A (2002) Plaid models for gene expression data. Stat Sin 12(1):61–86MathSciNetzbMATHGoogle Scholar
  22. 22.
    Li G, Ma Q, Tang H, Paterson AH, Xu Y (2009) Qubic: a qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Res 37(15):e101.  https://doi.org/10.1093/nar/gkp491 Google Scholar
  23. 23.
    Ling RF (1973) A probability theory of cluster analysis. J Am Stat Assoc 68(341):159–164MathSciNetzbMATHGoogle Scholar
  24. 24.
    Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE ACM Trans Comput Biol Bioinform 1(1):24–45Google Scholar
  25. 25.
    Mandal DP, Murthy CA (1997) Selection of alpha for alpha-hull in \(\{\text{ R2 }\}\). Pattern Recognit 30(10):1759–1767zbMATHGoogle Scholar
  26. 26.
    Mitra S, Banka H (2006) Multi-objective evolutionary biclustering of gene expression data. Pattern Recognit 39(12):2464–2477zbMATHGoogle Scholar
  27. 27.
    Moise G, Sander J, Ester M (2008) Robust projected clustering. Knowl. Inf. Syst. 14(3):273–298.  https://doi.org/10.1007/s10115-007-0090-6 zbMATHGoogle Scholar
  28. 28.
    Müller AC, Nowozin S, Lampert CH (2012) Information theoretic clustering using minimum spanning trees. Springer, Berlin, pp 205–215Google Scholar
  29. 29.
    Parsons L, Haque E, Liu H (2004) Subspace clustering for high dimensional data: a review. SIGKDD Explor. Newsl. 6(1):90–105.  https://doi.org/10.1145/1007730.1007731 Google Scholar
  30. 30.
    Parzen E (1962) On estimation of a probability density function and mode. Annals Math Stat 33(3):1065–1076MathSciNetzbMATHGoogle Scholar
  31. 31.
    Pontes B, Girldez R, Aguilar-Ruiz JS (2015) Biclustering on expression data: a review. J Biomed Inform 57:163–180Google Scholar
  32. 32.
    Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, Lander ES, Mitzenmacher M, Sabeti PC (2011) Detecting novel associations in large data sets. Science 16:1518–1524zbMATHGoogle Scholar
  33. 33.
    Selim Jahan EJ (2015) Human development report 2015: work for human development. http://hdr.undp.org/en/content/human-development-report-2015-work-human-development
  34. 34.
    Seridi K, Jourdan L, Talbi EG (2011) Multi-objective evolutionary algorithm for biclustering in microarrays data. In: 2011 IEEE congress of evolutionary computation (CEC), pp 2593–2599Google Scholar
  35. 35.
    Sim K, Gopalkrishnan V, Zimek A, Cong G (2013) A survey on enhanced subspace clustering. Data Min Knowl Discov 26(2):332–397MathSciNetzbMATHGoogle Scholar
  36. 36.
    Steele JM, Snyder TL (1989) Worst-case growth rates of some classical problems of combinatorial optimization. SIAM J Comput 18(2):278–287.  https://doi.org/10.1137/0218019 MathSciNetzbMATHGoogle Scholar
  37. 37.
    SzéKely GJ, Rizzo ML (2009) Brownian distance covariance. Annals Appl Stat 3(4):1236–1265MathSciNetzbMATHGoogle Scholar
  38. 38.
    Tanay A, Sharan R, Shamir R (2002) Discovering statistically significant biclusters in gene expression data. Bioinformatics 18:S136–S144Google Scholar
  39. 39.
    Wang Z, Li G, Robinson RW, Huang X (2016) Unibic: sequential row-based biclustering algorithm for analysis of gene expression data. Scientific reports.  https://doi.org/10.1038/srep23466
  40. 40.
    Yun T, Yi G-S (2013) Biclustering for the comprehensive search of correlated gene expression patterns using clustered seed expansion. BMC Genom 14:144Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations