Advertisement

Knowledge and Information Systems

, Volume 58, Issue 1, pp 169–208 | Cite as

Answering why-not questions on SPARQL queries

  • Meng WangEmail author
  • Jun Liu
  • Bifan Wei
  • Siyu Yao
  • Hongwei Zeng
  • Lei Shi
Regular Paper
  • 191 Downloads

Abstract

SPARQL, the W3C standard for RDF query languages, has gained significant popularity in recent years. An increasing amount of effort is currently being exerted to improve the functionality and usability of SPARQL-based search engines. However, explaining missing items in the results of SPARQL queries or the so-called why-not question has not received sufficient attention. In this study, we first formalize why-not questions on SPARQL queries and then propose a novel explanation model, called answering why-not questions on SPARQL (ANNA) to answer why-not questions using a divide-and-conquer strategy. ANNA adopts a graph-based approach and an operator-based approach to generate logical explanations at the triple pattern level and the query operator level, respectively, which helps users refine their initial queries. Extensive experimental results on two real-world RDF datasets show that the proposed model and algorithms can provide high-quality explanations in terms of both effectiveness and efficiency.

Keywords

Why-not SPARQL RDF graph Query Graph pattern 

Notes

Acknowledgements

This work is sponsored by the Fundamental Theory and Applications of Big Data with Knowledge Engineering under the National Key Research and Development Program of China with Grant No. 2016YFB1000903; National Science Foundation of China under Grant Nos. 61721002, 61672419, 61672418, 61532004 and 61532015; MOE Research Center for Online Education Funds under Grant No.2016YB165; Ministry of Education Innovation Research Team No. IRT17R86.

References

  1. 1.
    Baget JF, Benferhat S, Bouraoui Z, Croitoru M, Mugnier ML, Papini O, Rocher S, Tabia K (2016) A general modifier-based framework for inconsistency-tolerant query answering. In: KR, pp 513–516Google Scholar
  2. 2.
    Bhowmick SS, Sun A, Truong BQ (2013) Why not, wine? towards answering why-not questions in social image search. In: Proceedings of the ACMMM. ACM, pp 917–926Google Scholar
  3. 3.
    Bidoit N, Herschel M, Tzompanaki K (2014) Query-based why-not provenance with nedexplain. In: Proceedings of the EDBTGoogle Scholar
  4. 4.
    Bienvenu M, Bourgaux C, Goasdoué F (2016) Explaining inconsistency-tolerant query answering over description logic knowledge bases. In: AAAI, pp 900–906Google Scholar
  5. 5.
    Bienvenu M, Rosati R (2013) Tractable approximations of consistent query answering for robust ontology-based data access. In: IJCAI, pp 775–781Google Scholar
  6. 6.
    Calvanese D, Ortiz M, Simkus M, Stefanoni G (2013) Reasoning about explanations for negative query answers in dl-lite. J Artif Intell Res 48:635–669MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chapman A, Jagadish H (2009) Why not? In: Proceedings of the ACM SIGMOD. ACM, pp 523–534Google Scholar
  8. 8.
    Chen L, Lin X, Hu H, Jensen CS, Xu J (2015) Answering why-not questions on spatial keyword top-k queries. In: Proceedings of the ICDE. IEEE, pp 279–290Google Scholar
  9. 9.
    Cui Y, Widom J (2003) Lineage tracing for general data warehouse transformations. VLDB J 12(1):41–58CrossRefGoogle Scholar
  10. 10.
    Damásio CV, Analyti A, Antoniou G (2012) Provenance for sparql queries. In: Proceedings of the ISWC. Springer, pp 625–640Google Scholar
  11. 11.
    Dividino R, Sizov S, Staab S, Schueler B (2009) Querying for provenance, trust, uncertainty and other meta knowledge in RDF. Web Semant Sci Serv Agents World Wide Web 7(3):204–219CrossRefGoogle Scholar
  12. 12.
    Eiter T, Fink M, Schüller P, Weinzierl A (2014) Finding explanations of inconsistency in multi-context systems. Artif Intell 216:233–274MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Elbassuoni S, Ramanath M, Schenkel R, Sydow M, Weikum G (2009) Language-model-based ranking for queries on RDF-graphs. In: Proceedings of the CIKM. ACM, pp 977–986Google Scholar
  14. 14.
    Elbassuoni S, Ramanath M, Weikum G (2011) Query relaxation for entity-relationship search. In: Proceedings of the ESWC. Springer, pp 62–76Google Scholar
  15. 15.
    Gallego MA, Fernández JD, Martínez-Prieto MA, de la Fuente P (2011) An empirical study of real-world sparql queries. In: Proceedings of the USEWOD2011, Hydebarabad, IndiaGoogle Scholar
  16. 16.
    Gao Y, Liu Q, Chen G, Zheng B, Zhou L (2015) Answering why-not questions on reverse top-k queries. In: Proceedings of the VLDB Endowment, vol. 8. VLDB Endowment, pp 738–749Google Scholar
  17. 17.
    Group, W.C.S.W. (2013) Sparql 1.1 overview. http://www.w3.org/TR/sparql11-overview/
  18. 18.
    He Z, Lo E (2014) Answering why-not questions on top-k queries. IEEE Trans Knowl Data Eng 26(6):1300–1315CrossRefGoogle Scholar
  19. 19.
    Herschel M, Hernández MA (2010) Explaining missing answers to spjua queries. In: Proceedings of the VLDB endowment, vol. 3. VLDB Endowment, pp 185–196Google Scholar
  20. 20.
    Huang J, Chen T, Doan A, Naughton JF (2008) On the provenance of non-answers to queries over extracted data. In: Proceedings of the VLDB endowment, vol. 1. VLDB Endowment, pp 736–747Google Scholar
  21. 21.
    Huang H, Liu C, Zhou X (2008) Computing relaxed answers on RDF databases. In: Proceedings of the WISE. Springer, pp 163–175 (2008)Google Scholar
  22. 22.
    Hurtado CA, Poulovassilis A, Wood PT (2006) A relaxed approach to RDF querying. In: Proceedings of the ISWC. Springer, pp 314–328Google Scholar
  23. 23.
    Islam MS, Zhou R, Liu C (2013) On answering why-not questions in reverse skyline queries. In: Proceedings of the ICDE. IEEE, pp 973–984Google Scholar
  24. 24.
    Islam MS, Liu C, Li J (2015) Efficient answering of why-not questions in similar graph matching. IEEE Trans Knowl Data Eng 27(10):2672–2686CrossRefGoogle Scholar
  25. 25.
    Kiefer C, Bernstein A, Lee HJ, Klein M, Stocker M (2007) Semantic process retrieval with iSPARQL. In: Proceedings of the ESWC. Springer, pp 609–623Google Scholar
  26. 26.
    Lembo D, Lenzerini M, Rosati R, Ruzzi M, Savo DF (2015) Inconsistency-tolerant query answering in ontology-based data access. Web Semant Sci Serv Agents World Wide Web 33:3–29CrossRefGoogle Scholar
  27. 27.
    Miltersen PB, Radhakrishnan J, Wegener I (2005) On converting CNF to DNF. Theor Comput Sci 347(1):325–335MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pérez J, Arenas M, Gutierrez C (2009) Semantics and complexity of sparql. ACM Trans Database Syst 34:1–45CrossRefGoogle Scholar
  29. 29.
    Saleem M, Ali MI, Hogan A, Mehmood Q, Ngomo ACN (2015) LSQ: the linked SPARQL queries dataset. In: ISWC, pp 121–131Google Scholar
  30. 30.
    Schmidt M, Meier M, Lausen G (2010) Foundations of SPARQL query optimization. In: Proceedings of the ICDT. ACM, pp 4–33Google Scholar
  31. 31.
    ten Cate B, Civili C, Sherkhonov E, Tan WC (2015) High-level why-not explanations using ontologies. In: Proceedings of the ACM PODS. ACM, pp 31–43Google Scholar
  32. 32.
    Theoharis Y, Fundulaki I, Karvounarakis G, Christophides V (2011) On provenance of queries on semantic web data. IEEE Internet Comput 15(1):31–39CrossRefGoogle Scholar
  33. 33.
    Tran QT, Chan CY (2010) How to conquer why-not questions. In: Proceedings of the ACM SIGMOD. ACM, pp 15–26Google Scholar
  34. 34.
    Vidal ME, Ruckhaus E, Lampo T, Martínez A, Sierra J, Polleres A (2010) Efficiently joining group patterns in sparql queries. In: Proceedings of the ESWC. Springer, pp 228–242Google Scholar
  35. 35.
    Wang M, Chen W, Wang S, Liu J, Li X, Stantic B (2017) Answering why-not questions on semantic multimedia queries. Multimed Tools Appl 1–25.  https://doi.org/10.1007/11042-017-5151-6
  36. 36.
    Yao S, Liu J, Wang M, Wei B, Chen X (2015) Anna: answering why-not questions for SPARQL. In Proceedings of the ISWC (Demos)Google Scholar
  37. 37.
    Zhang X, Xiao G, Lin Z, Van den Bussche J (2014) Inconsistency-tolerant reasoning with OWL DL. Int J Approx Reason 55(2):557–584MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Zhou X, Gaugaz J, Balke WT, Nejdl W (2007) Query relaxation using malleable schemas. In: Proceedings of the ACM SIGMOD. ACM, pp 545–556Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Meng Wang
    • 1
    Email author
  • Jun Liu
    • 1
  • Bifan Wei
    • 1
  • Siyu Yao
    • 1
  • Hongwei Zeng
    • 1
  • Lei Shi
    • 1
  1. 1.MOEKLINNS LabXi’an Jiaotong UniversityXi’anChina

Personalised recommendations