Advertisement

Knowledge and Information Systems

, Volume 55, Issue 1, pp 141–169 | Cite as

The largest empty circle with location constraints in spatial databases

  • Gilberto Gutiérrez
  • Juan R. López
  • José R. Paramá
  • Miguel R. Penabad
Regular Paper
  • 182 Downloads

Abstract

Given a set S of points in the two-dimensional space, which are stored in a spatial database, this paper presents an efficient algorithm to find, in the area delimited by those points, the empty circle with the largest area that contains only a query point q. Our algorithm adapts previous work in the field of computational geometry to be used in spatial databases, which requires to manage large amounts of data. To achieve this objective, the basic idea is to discard a large part of the points of S, in such a way that the problem can be solved providing only the remaining points to a classical computational geometry algorithm that, by processing a smaller collection of points, saves main memory resources and computation time. The correctness of our algorithm is formally proven. In addition, we empirically show its efficiency and scalability by running a set of experiments using both synthetic and real data.

Keywords

Spatial databases Query processing Geographical information systems Largest empty circle 

References

  1. 1.
    Aggarwal A, Suri S (1987) Fast algorithms for computing the largest empty rectangle. In: Proceedings of third annual symposium on computational geometry SCG, pp 278–290Google Scholar
  2. 2.
    Augustine J, Das S, Maheshwari A, Nandy SC, Roy S, Sarvattomananda S (2010) Querying for the largest empty geometric object in a desired location. In: CoRR arXiv:abs/1004.0558v2
  3. 3.
    Augustine J, Das S, Maheshwari A, Nandy SC, Roy S, Sarvattomananda S (2013) Localized geometric query problems. Comput Geom 46(3):340–357MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Augustine J, Putnam B, Roy S (2010) Largest empty circle centered on a query line. J Discrete Algorithms 8(2):143–153MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Augustine J, Putnam B, Roy S (2010) Largest empty circle centered on a query line. J Discrete Algorithms 8(2):143–153MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Azri S, Ujang U, Anton F, Mioc D, Rahman AA (2013) Review of spatial indexing techniques for large urban data management. In: Proceedings of international symposium & exhibition on geoinformation ISGGoogle Scholar
  7. 7.
    Bayer R, McCreight EM (1972) Organization and maintenance of large ordered indexes. Acta Inform 1(3):173–189CrossRefMATHGoogle Scholar
  8. 8.
    Beckmann N, Kriegel H, Schneider R, Seeger B (1990) The R*-tree: An efficient and robust access method for points and rectangles. In: Proceedings of ACM SIGMOD conference on management of data, pp 322–331Google Scholar
  9. 9.
    Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18(9):509–517CrossRefMATHGoogle Scholar
  10. 10.
    Böhm C, Kriegel HP (2001) Determining the convex hull in large multidimensional databases. In: Proceedings of the third international conference on data warehousing and knowledge discovery DaWaK, pp 294–306Google Scholar
  11. 11.
    Bose P, Wang Q (2002) Facility location constrained to a polygonal domain. In: Proceedings of the latin American symposium on theoretical informatics LATIN, pp 153–164. SpringerGoogle Scholar
  12. 12.
    Chaudhuri J, Nandy SC, Das S (2003) Largest empty rectangle among a point set. J Algorithms 46:54–78MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Cheng L, Wu C, Zhang Y, Wang Y (2011) An energy-balance repair scheme in wireless sensor networks. J Inf Comput Sci 8(6):969–976Google Scholar
  14. 14.
    Cheng MX, Li D (2008) Advances in wireless ad hoc and sensor networks. Springer, New YorkGoogle Scholar
  15. 15.
    Chew LP, Drysdale RLS (1986) Finding largest empty circles with location constraints. Technical Report PCS-TR86-130, Dartmouth College, Computer Science, Hanover, NHGoogle Scholar
  16. 16.
    Corral A (2002) Algoritmos para el procesamiento de consultas espaciales utilizando r-trees. la consulta de los pares más cercanos y su aplicación en bases de datos espaciales. Ph.D. thesis, Universidad de Almería, Escuela Politécnica Superior, EspañaGoogle Scholar
  17. 17.
    Corral A, Manolopoulos Y, Theodoridis Y, Vassilakopoulos M (2004) Algorithms for processing k-closest-pair queries in spatial databases. Data Knowl Eng 49(1):67–104CrossRefGoogle Scholar
  18. 18.
    Dumitrescu A, Jiang M (2014) Computational geometry column 60. SIGACT News 45(4):76–82MathSciNetCrossRefGoogle Scholar
  19. 19.
    Edmonds J, Gryz J, Liang D, Miller RJ (2003) Mining for empty spaces in large data sets. Theor Comput Sci 296:435–452MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Filipe L, Vieira M, Augusto M, Vieira M, Ruiz LB, Alfredo A, Loureiro F, Silva DC, Otviofernandes A, Carlos AA, mg Brazil PBH (2004) Efficient incremental sensor network deployment algorithm. In: Proceedings of Brazilian symposium on computer networks SBRCGoogle Scholar
  21. 21.
    Finkel RA, Bentley JL (1974) Quad trees a data structure for retrieval on composite keys. Acta Inform 4(1):1–9CrossRefMATHGoogle Scholar
  22. 22.
    Gargantini I (1982) An effective way to represent quadtrees. Commun ACM 25:905–910CrossRefMATHGoogle Scholar
  23. 23.
    Graham R (1972) An efficient algorithm for determining the convex hull of a finite planar set. Inf Proc Lett 1:132–133CrossRefMATHGoogle Scholar
  24. 24.
    Gutiérrez G, Paramá JR (2012) Finding the largest empty rectangle containing only a query point in large multidimensional databases. In: Proceedings of conference on scientific and statistical database management SSDBM, pp 316–333Google Scholar
  25. 25.
    Gutiérrez G, Paramá JR, Brisaboa N, Corral A (2014) The largest empty rectangle containing only a query object in spatial databases. GeoInformatica 18(2):193–228CrossRefGoogle Scholar
  26. 26.
    Gutierrez G, Sáez P (2013) The k closest pairs in spatial databases - when only one set is indexed. GeoInformatica 17(4):543–565CrossRefGoogle Scholar
  27. 27.
    Guttman A (1984) R-trees: A dynamic index structure for spatial searching. In: Proceedings of ACM SIGMOD conference on management of data, pp 47–57Google Scholar
  28. 28.
    Hjaltason GR, Samet H (1998) Incremental distance join algorithms for spatial databases. In: Proceedings of ACM SIGMOD conference on management of data, pp 237–248Google Scholar
  29. 29.
    Kaminker T, Sharir M (2014) Finding the largest disk containing a query point in logarithmic time with linear storage. In: Proceedings of the thirtieth annual symposium on computational geometry SCG, pp 206:206–206:213Google Scholar
  30. 30.
    Kaplan H, Mozes S, Nussbaum Y, Sharir M (2012) Submatrix maximum queries in monge matrices and monge partial matrices, and their applications. In: Proceedings of symposium on discrete algorithms SODA, pp 338–355Google Scholar
  31. 31.
    Kaplan H, Sharir M (2012) Finding the maximal empty disk containing a query point. In: Proceedings of the twenty-eighth annual symposium on computational geometry, pp 287–292Google Scholar
  32. 32.
    Manolopoulos Y, Nanopoulos A, Papadopoulos AN, Theodoridis Y (2006) R-trees: theory and applications. Springer, LondonCrossRefMATHGoogle Scholar
  33. 33.
    Mellou K (2014) Efficient algorithms for calculating the maximum empty cube in areas with obstacles. Ph.D. thesis, National Technical University of Athens, GreeceGoogle Scholar
  34. 34.
    Naamad A, Lee D, Hsu WL (1984) On the maximum empty rectangle problem. Discrete Appl Math 8(3):267–277MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    O’Rourke J (1987) Art gallery theorems and algorithms. Oxford University Press Inc, New YorkMATHGoogle Scholar
  36. 36.
    O’Rourke J (1998) Computational geometry in C. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  37. 37.
    Preparata F, Shamos M (1985) Computational geometry: an introduction. Springer, New YorkCrossRefMATHGoogle Scholar
  38. 38.
    Preparata FP, Hong SJ (1977) Convex hulls of finite sets of points in two and three dimensions. Commun ACM 20(1):87–93MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Robinson JT (1981) The K-D-B-tree: a search structure for large multidimensional dynamic indexes. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 10–18Google Scholar
  40. 40.
    Roussopoulos N, Kelley S, Vincent F (1995) Nearest neighbor queries. SIGMOD Rec 24(2):71–79CrossRefGoogle Scholar
  41. 41.
    Samet H (2006) Foundations of multidimensional and metric data structures. MorganKaufmann, San FranciscoMATHGoogle Scholar
  42. 42.
    Shamos MI (1978) Computational geometry. Ph.D. thesis, Dept. Computer Sciences, Yale UniversityGoogle Scholar
  43. 43.
    Shamos MI, Hoey D (1975) Closest-point problems. In: Proceedings of 16th annual symposium on foundations of computer science FOCS, pp 151–162. IEEEGoogle Scholar
  44. 44.
    Stratil H (2004) An efficient implementation of the greedy forwarding strategy. In: Proceedings of Informatik 2004, Informatik verbindet, Band 2, Beitrge der 34. Jahrestagung der Gesellschaft fr Informatik e.V., pp 365–369Google Scholar
  45. 45.
    Toussaint G (1983) Computing largest empty circles with location constraints. Int J Comput Inf Sci 12(5):347–358MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Valentine FA, Buchman E (1976) External visibility. Pacific J Math 64(2):333–340MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Wu CH, Lee KC, Chung YC (2007) A delaunay triangulation based method for wireless sensor network deployment. Comput Commun 30(14–15):2744–2752CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • Gilberto Gutiérrez
    • 2
  • Juan R. López
    • 1
  • José R. Paramá
    • 1
  • Miguel R. Penabad
    • 1
  1. 1.Facultade de Informática, CITICUniversidade da CoruñaA CoruñaSpain
  2. 2.Computer Science and Information Technologies DepartmentUniversidad del Bío-BíoChillánChile

Personalised recommendations