Knowledge and Information Systems

, Volume 51, Issue 3, pp 775–819 | Cite as

Minimizing conservativity violations in ontology alignments: algorithms and evaluation

  • Alessandro Solimando
  • Ernesto Jiménez-Ruiz
  • Giovanna Guerrini
Regular Paper

Abstract

In order to enable interoperability between ontology-based systems, ontology matching techniques have been proposed. However, when the generated mappings lead to undesired logical consequences, their usefulness may be diminished. In this paper, we present an approach to detect and minimize the violations of the so-called conservativity principle where novel subsumption entailments between named concepts in one of the input ontologies are considered as unwanted. The practical applicability of the proposed approach is experimentally demonstrated on the datasets from the Ontology Alignment Evaluation Initiative.

Keywords

Ontology alignment Ontology matching Ontology alignment debugging Mapping repair 

Notes

Acknowledgments

Ernesto Jiménez-Ruiz was funded by the European Commission under FP7 Grant Agreement 318338, “Optique”, and the EPSRC projects Score! ED3 and DBOnto. We also thank the invaluable help provided by Bernardo Cuenca and Ian Horrocks. We are also very grateful for the support of the Optique colleagues that facilitated our understanding of the domain, especially Dag Hovland, Evgeny Kharlamov, Dmitry Zheleznyakov, Martin Giese and Martin G. Skjæveland. Finally, we would also like to thank the anonymous reviewers of this paper.

References

  1. 1.
    Agrawal R, Borgida A, Jagadish HV (1989) Efficient management of transitive relationships in large data and knowledge bases. In: ACM SIGMOD Conference on Management of Data, pp 253–262Google Scholar
  2. 2.
    Arnold P, Rahm E (2013) Semantic enrichment of ontology mappings: a linguistic-based approach. In: Advances in Databases and Information System - East European Conference (ADBIS), pp 42–55Google Scholar
  3. 3.
    Baader F, Horrocks I, Sattler U (2008) Chapter 3 description logics. In: Bruce Porter Frank van Harmelen, Vladimir Lifschitz (eds) Handbook of Knowledge Representation, vo 3 of Foundations of Artificial Intelligence, Elsevier, pp 135–179Google Scholar
  4. 4.
    Beisswanger E, Hahn U (2012) Towards valid and reusable reference alignments: ten basic quality checks for ontology alignments and their application to three different reference data sets. J Biomed Semant 3(Suppl 1):S4CrossRefGoogle Scholar
  5. 5.
    Bodenreider O (2004) The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res 32:267–270CrossRefGoogle Scholar
  6. 6.
    Borgida A, Serafini L (2003) Distributed description logics: assimilating information from peer sources. J Data Semant 1:153–184MATHGoogle Scholar
  7. 7.
    Christophides V, Plexousakis D, Scholl M, Tourtounis S (2003) On labeling schemes for the semantic web. In: International World Wide Web Conference (WWW), pp 544–555Google Scholar
  8. 8.
    Cuenca Grau B, Horrocks I, Kazakov Y, Sattler U (2008) Modular reuse of ontologies. J Artif Intell Res (JAIR) 31:273–318MathSciNetMATHGoogle Scholar
  9. 9.
    David J, Euzenat J, Scharffe F, Trojahn C (2011) The alignment API 4.0. Semant Web J 2(1):3–10Google Scholar
  10. 10.
    Dovier A, Formisano A, Pontelli E (2007) An experimental comparison of constraint logic programming and answer set programming. AAAI 7:1622–1625MATHGoogle Scholar
  11. 11.
    Dowling WF, Gallier JH (1984) Linear-time algorithms for testing the satisfiability of propositional Horn formulae. J Log Program 1(3):267–284MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    DuyHoa N, Bellahsene Z (2013) YAM++ results for OAEI 2013. In: Ontology Matching Workshop (OM), pp 211–218Google Scholar
  13. 13.
    Euzenat J (2015) Revision in networks of ontologies. Artif Intell 228:195–216MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Euzenat J, Meilicke C, Stuckenschmidt H, Shvaiko P, Trojahn C (2011) Ontology alignment evaluation initiative: six years of experience. J Data Semant 15:158–192CrossRefGoogle Scholar
  15. 15.
    Euzenat J, Shvaiko P (2010) Ontology matching. Springer, HeidelbergMATHGoogle Scholar
  16. 16.
    Even G, Naor JS, Schieber B, Sudan M (1998) Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20(2):151–174MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Faria D, Pesquita C, Santos E, Palmonari M, Cruz Isabel F, Couto FM (2013) The agreementmakerlight ontology matching system. In: OTM Conferences, pp 527–541Google Scholar
  18. 18.
    Ferré S, Rudolph S (2012) Advocatus diaboli–exploratory enrichment of ontologies with negative constraints. In: International Conference on Knowledge Engineering (EKAW), pp 42–56Google Scholar
  19. 19.
    Fleischhacker D, Völker J (2011) Inductive learning of disjointness axioms. In: OTM Conferences, pp 680–697Google Scholar
  20. 20.
    Galinier P, Lemamou E, Bouzidi MW (2013) Applying local search to the feedback Vertex set problem. J Heur 1–22Google Scholar
  21. 21.
    Gallo G, Urbani G (1989) Algorithms for testing the satisfiability of propositional formulae. J Log Program 7(1):45–61MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Giese M, Soylu A, Vega-Gorgojo G, Waaler A, Haase P, Jiménez-Ruiz E, Lanti D, Rezk M, Xiao G, Özçep Ö, Rosati R (2015) Optique: zooming in on big data. IEEE Comput 48(3):60–67CrossRefGoogle Scholar
  23. 23.
    Glimm B, Horrocks I, Motik B, Stoilos G, Wang Z (2014) Hermit: an OWL 2 reasoner. J Autom Reason 53(3):245–269CrossRefMATHGoogle Scholar
  24. 24.
    Golbeck J, Fragoso G, Hartel FW, Hendler JA, Oberthaler J, Parsia B (2003) The national cancer institute’s thésaurus and ontology. J Web Semant 1(1):75–80CrossRefGoogle Scholar
  25. 25.
    Gonçalves RS, Parsia B, Sattler U (2012) Concept-based semantic difference in expressive description logics. In: International Semantic Web Conference (ISWC), Springer, pp 99–115Google Scholar
  26. 26.
    Grau BC, Horrocks I, Kazakov Y, Sattler U (2007) Just the right amount: extracting modules from ontologies. In: International Conference on World Wide Web (WWW), pp 717–726. ACMGoogle Scholar
  27. 27.
    Grau BC, Horrocks I, Motik B, Parsia B, Patel-Schneider PF, Sattler U (2008) OWL 2: the next step for OWL. J Web Semant 6(4):309–322CrossRefGoogle Scholar
  28. 28.
    Horridge M (2011) Justification based explanation in ontologies. PhD thesis, University of ManchesterGoogle Scholar
  29. 29.
    Horridge M, Parsia B, Sattler U (2008) Laconic and precise justifications in OWL. In: International Semantic Web Conference (ISWC), pp 323–338Google Scholar
  30. 30.
    Horrocks I, Kutz O, Sattler U (2006) The even more Irresistible SROIQ. In: International Conference on Principles of Knowledge Representation and Reasoning (KR), pp 57–67Google Scholar
  31. 31.
    Ivanova V, Lambrix P (2013) A unified approach for aligning taxonomies and debugging taxonomies and their alignments. In: European Semantic Web Conference (ESWC), Springer, pp 1–15Google Scholar
  32. 32.
    Jean-Mary Yves R, Patrick Shironoshita E, Kabuka Mansur R (2009) Ontology matching with semantic verification. J Web Semant 7(3):235–251CrossRefGoogle Scholar
  33. 33.
    Jiménez-Ruiz E, Grau BC (2011) LogMap: logic-based and scalable ontology matching. In: International Semantic Web Conference (ISWC), pp 273–288,Google Scholar
  34. 34.
    Jiménez-Ruiz E, Grau BC, Horrocks I (2012) On the feasibility of using OWL 2 DL reasoners for ontology matching problems. In: OWL Reasoner Evaluation Workshop (ORE)Google Scholar
  35. 35.
    Jiménez-Ruiz E, Grau BC, Horrocks I, Berlanga R (2009) Ontology integration using mappings: towards getting the right logical consequences. In: European Semantic Web Conference (ESWC), pp 173–187Google Scholar
  36. 36.
    Jiménez-Ruiz E, Grau BC, Horrocks I, Berlanga R (2011) Logic-based assessment of the compatibility of UMLS ontology sources. J Biomed Semant 2(Suppl 1):S2CrossRefGoogle Scholar
  37. 37.
    Jiménez-Ruiz E, Grau BC, Zhou Y, Horrocks I (2012) Large-scale interactive ontology matching: algorithms and implementation. In: European Conference on Artificial Intelligence (ECAI), pp 444–449Google Scholar
  38. 38.
    Jiménez-Ruiz E, Kharlamov E, Zheleznyakov D, Horrocks I, Pinkel C, Skjæveland MG, Thorstensen E, Mora J (2015) BootOX: practical mapping of RDBs to OWL 2. In: International Semantic Web Conference (ISWC), pp 113–132Google Scholar
  39. 39.
    Jiménez-Ruiz E, Meilicke C, Grau BC, Horrocks I (2013) Evaluating mapping repair systems with large biomedical ontologies. In: Description Logics (DL), pp 246–257Google Scholar
  40. 40.
    Jiménez-Ruiz E, Payne TR, Solimando A, Tamma V (2015) Avoiding alignment-based conservativity violations through dialogue. In: International Workshop on OWL: Experiences and Directions (OWLED)Google Scholar
  41. 41.
    Jiménez-Ruiz E, Payne TR, Solimando A, Tamma VAM (2016) Limiting logical violations in ontology alignment through negotiation. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference (KR), pp 217–226Google Scholar
  42. 42.
    Kalyanpur A, Parsia B, Horridge M, Sirin E (2007) Finding all justifications of OWL DL entailments. In: International Semantic Web Conference (ISWC), pp 267–280Google Scholar
  43. 43.
    Kazakov Y, Krötzsch M, Simancik F (2014) The incredible ELK - from polynomial procedures to efficient reasoning with \({\cal EL}\) ontologies. J Autom Reason 53(1):1–61MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Kharlamov E, Hovland D, Jiménez-Ruiz E, Lanti D, Lie H, Pinkel C, Rezk M, Skjæveland MG, Zheleznyakov E, Horrocks I (2015) Ontology based access to exploration data at statoil. In: International Semantic Web Conference (ISWC), pp 93–112Google Scholar
  45. 45.
    Kharlamov E, Solomakhina N, Özçep ÖL, Zheleznyakov D, Hubauer T, Lamparter S, Roshchin M, Soylu A, Watson S (2014) How semantic technologies can enhance data access at siemens energy. In: International Semantic Web Conference (ISWC), pp 601–619Google Scholar
  46. 46.
    Konev B, Walther D, Wolter F (2008) The logical difference problem for description logic terminologies. In: International Joint Conference on Automated Reasoning (IJCAR), pp 259–274Google Scholar
  47. 47.
    Kontchakov R, Wolter F, Zakharyaschev M (20084) Can you tell the difference between DL-Lite ontologies?. In: International Conference on Principles of Knowledge Representation and Reasoning (KR)Google Scholar
  48. 48.
    Lambrix P, Dragisic Z, Ivanova V (2013) Get my pizza right: repairing missing is-a relations in \({\cal ALC}\) ontologies. In: Semantic Technology, Springer, pp 17–32Google Scholar
  49. 49.
    Lambrix P, Liu Q (2013) Debugging the missing is-a structure within taxonomies networked by partial reference alignments. Data Knowl Eng (DKE) 86:179–205CrossRefGoogle Scholar
  50. 50.
    Lambrix P, Wei-Kleiner F, Dragisic Z, Ivanova V (2013) Repairing missing is-a structure in ontologies is an abductive reasoning problem. In: International Workshop on Debugging Ontologies and Ontology Mappings (WoDOOM), pp 33Google Scholar
  51. 51.
    Lutz C, Walther D, Wolter F (2007) Conservative extensions in expressive description logics. Int Jt Conf Artif Intell (IJCAI) 7:453–458Google Scholar
  52. 52.
    Lutz C, Wolter F (2010) Deciding inseparability and conservative extensions in the description logic EL. J Symb Comput 45(2):194–228CrossRefMATHGoogle Scholar
  53. 53.
    Mascardi V, Ancona D, Barbieri M, Bordini RH, Ricci A (2014) CooL-AgentSpeak: Endowing Agentspeak-DL agents with plan exchange and ontology services. Web Intell Agent Syst 12(1):83–107Google Scholar
  54. 54.
    Meilicke C (2011) Alignments incoherency in ontology matching. PhD thesis, University of MannheimGoogle Scholar
  55. 55.
    Meilicke C, Stuckenschmidt H, Tamilin A (2009) Reasoning support for mapping revision. J Log Comput 19(5):807–829MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Meilicke C, Völker J, Stuckenschmidt H (2008) Learning disjointness for debugging mappings between lightweight ontologies. In: International Conference on Knowledge Engineering (EKAW), pp 93–108Google Scholar
  57. 57.
    Melnik S, Garcia-Molina H, Rahm E (2002) Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In: IEEE International Conference on Data Engineering (ICDE), pp 117–128Google Scholar
  58. 58.
    Motik B, Grau BC, Horrocks I, Sattler U (2009) Representing ontologies using description logics, description graphs, and rules. Artif Intell J 173(14):1275–1309MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Nebot V, Berlanga R (2009) Efficient retrieval of ontology fragments using an interval labeling scheme. Inf Sci J 179(24):4151–4173CrossRefGoogle Scholar
  60. 60.
    Payne TR, Tamma V (2014) A Dialectical approach to selectively reusing ontological correspondences. In: Knowledge Engineering and Knowledge Management (EKAW), Springer, pp 397–412Google Scholar
  61. 61.
    Payne TR, Tamma V (2014) Negotiating over ontological correspondences with asymmetric and incomplete knowledge. In: International Conference on Autonomous Agents and Multi-Agent Systems, (AAMAS), pp 517–524Google Scholar
  62. 62.
    Pesquita C, Faria D, Santos E, Couto FM (2013) To repair or not to repair: reconciling correctness and coherence in ontology reference alignments. In: Ontology Matching Workshop (OM), pp 13–24Google Scholar
  63. 63.
    Raymond R (1987) A theory of diagnosis from first principles. Artif Intell J 32(1):57–59MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Rodriguez-Muro M, Rezk M (2015) Efficient SPARQL-to-SQL with R2RML mappings. J Web Semant 33:141–169CrossRefGoogle Scholar
  65. 65.
    Rosse C, Mejino JLV Jr (2003) A reference ontology for biomedical informatics: the foundational model of anatomy. J Biomed Inform 36(6):478–500CrossRefGoogle Scholar
  66. 66.
    Santos E, Faria D, Pesquita C, Couto F (2013) Ontology alignment repair through modularization and confidence-based heuristics. arXiv:1307.5322 preprint
  67. 67.
    Schlobach S (2005) Debugging and semantic clarification by pinpointing. In: European Semantic Web Conference (ESWC), Springer, pp 226–240Google Scholar
  68. 68.
    Schlobach S, Cornet R (2003) Non-standard reasoning services for the debugging of description logic terminologies. In: International Joint Conference on Artificial Intelligence (IJCAI), pp 355–362Google Scholar
  69. 69.
    Schulz S, Cornet R, Spackman KA (2011) Consolidating SNOMED CT’s ontological commitment. Appl Ontol 6(1):1–11Google Scholar
  70. 70.
    Sesen MB, Bañares-Alcántara R, Fox J, Kadir T, Brady JM (2012) Lung Cancer Assistant: an ontology-driven, online decision support prototype. In: International Workshop on OWL: Experiences and Directions (OWLED)Google Scholar
  71. 71.
    Shvaiko P, Euzenat J (2012) Ontology matching: state of the art and future challenges. Trans Knowl Data Eng (TKDE) 25(1):158–176CrossRefGoogle Scholar
  72. 72.
    Skjæveland MG, Lian EH, Horrocks I (2013) Publishing the Norwegian Petroleum directorate’s FactPages as semantic eeb data. In: International Semantic Web Conference (ISWC), pp 162–177Google Scholar
  73. 73.
    Solimando A (2015) Change Management in the Traditional and Semantic Web. PhD thesis, University of Genoa. https://github.com/asolimando/logmap-conservativity/raw/master/SolimandoA-thesis.pdf
  74. 74.
    Solimando A, Jiménez-Ruiz E, Guerrini G (2014) A multi-strategy approach for detecting and correcting conservativity principle violations in ontology alignments. In: International Workshop on OWL: Experiences and Directions (OWLED), pp 13–24Google Scholar
  75. 75.
    Solimando A, Jiménez-Ruiz E, Guerrini G (2014) Detecting and correcting conservativity principle violations in ontology-to-ontology mappings. In: International Semantic Web Conference (ISWC), pp 1–16Google Scholar
  76. 76.
    Solimando A, Jiménez-Ruiz E, Guerrini G (2015) On the feasibility of using OWL 2 reasoners in ontology alignment repair problems. In: OWL Reasoner Evaluation Workshop (ORE), pp 60–67Google Scholar
  77. 77.
    Solimando A, Jiménez-Ruiz E, Guerrini G (2016) Pushing the limits of OWL 2 reasoners in ontology alignment repair problems. Intell Artif 10:1–18CrossRefGoogle Scholar
  78. 78.
    Solimando A, Jiménez-Ruiz E, Pinkel C (2014) Evaluating ontology alignment systems in query answering tasks. In: International Semantic Web Posters & Demonstrations Track (ISWC), pp 301–304Google Scholar
  79. 79.
    Soylu A, Giese M, Jimenez-Ruiz E, Vega-Gorgojo G, Horrocks I (2015) Experiencing OptiqueVQS: a multi-paradigm and ontology-based visual query system for end users. Univers Access Inf Soc 15(1):129–152CrossRefGoogle Scholar
  80. 80.
    Suntisrivaraporn B, Qi G, Ji Q, Haase P (2008) A modularization-based approach to finding all justifications for OWL DL entailments. In: Asian Semantic Web Conference (ASWC), pp 1–15Google Scholar
  81. 81.
    Tarjan R (1972) Depth-first search and linear graph algorithms. SIAM J Comput 1(2):146–160MathSciNetCrossRefMATHGoogle Scholar
  82. 82.
    Völker J, Vrandecic D, Sure Y, Hotho A (2007) Learning disjointness. In: European Semantic Web Conference (ESWC), pp 175–189Google Scholar
  83. 83.
    Šváb O, Svátek V, Berka P, Rak D, Tomášek P (2005) Ontofarm: towards an experimental collection of parallel ontologies. In: International Semantic Web Conference (ISWC). Poster SessionGoogle Scholar
  84. 84.
    W3C as Hitzler P, Krötzsch M, Parsia B, Patel-Schneider PF, Rudolph S (2009) OWL 2 Web Ontology language primer. http://www.w3.org/TR/owl2-primer/
  85. 85.
    Wang P, Xu B (2012) Debugging ontology mappings: a static approach. Comput Inform 27(1):21–36MathSciNetGoogle Scholar
  86. 86.
    Zhang S, Mork P, Bodenreider O (2004) Lessons learned from aligning two representations of anatomy. In: International Conference on Principles of Knowledge Representation and Reasoning (KR)Google Scholar
  87. 87.
    Zimmermann A, Euzenat J (2006) Three semantics for distributed systems and their relations with alignment composition. In: International Semantic Web Conference (ISWC). Springer, pp 16–29Google Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.DIBRIS, Informatica, Bioingegneria, Robotica e Ingegneria dei SistemiUniversity of GenovaGenovaItaly
  2. 2.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations