Knowledge and Information Systems

, Volume 40, Issue 1, pp 1–28 | Cite as

Ontology alignment design patterns

  • François Scharffe
  • Ondřej Zamazal
  • Dieter Fensel
Regular Paper

Abstract

Interoperability between heterogeneous ontological descriptions can be performed through ontology mediation techniques. At the heart of ontology mediation lies the alignment: a specification of correspondences between ontology entities. Ontology matching can bring some automation but are limited to finding simple correspondences. Design patterns have proven themselves useful to capture experience in design problems. In this article, we introduce ontology alignment patterns as reusable templates of recurring correspondences. Based on a detailed analysis of frequent ontology mismatches, we develop a library of common patterns. Ontology alignment patterns can be used to refine correspondences, either by the alignment designer or via pattern detection algorithms. We distinguish three levels of abstraction for ontology alignment representation, going from executable transformation rules, to concrete correspondences between two ontologies, to ontology alignment patterns at the third level. We express patterns using an ontology alignment representation language, making them ready to use in practical mediation tasks. We extract mismatches from vocabularies associated with data sets published as linked open data, and we evaluate the ability of correspondence patterns to provide proper alignments for these mismatches. Finally, we describe an application of ontology alignment patterns for an ontology transformation service.

Keywords

Ontology alignment patterns Ontology mapping Ontology alignment Ontology mediation Design patterns Data integration 

References

  1. 1.
    Aïtelhadj A, Boughanem M, Mezghiche M, Souam F (2011) Using structural similarity for clustering XML documents. Knowl Inf Syst 32(1):109–139CrossRefGoogle Scholar
  2. 2.
    Alexander Ch, Ishikawa S, Silverstein M (1977) A pattern language. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Batini C, Lenzerini M, Navathe SB (1986) A comparative analysis of methodologies for database schema integration. ACM Comput Surv 18(4):323–364CrossRefGoogle Scholar
  4. 4.
    Besana P, Robertson D, Rovatsos M (2005) Exploiting interaction contexts in P2P ontology mapping. In: International workshop on peer-to-peer knowledge management (P2PKM), San Diego, CA, USA, July 2005Google Scholar
  5. 5.
    Bizer C (2003) D2R MAP—a database to RDF mapping language. In: Proceedings of the 12th international world wide web conference (Posters), Budapest, May 2003Google Scholar
  6. 6.
    Blomqvist E, Sandkuhl K (2005) Patterns in ontology engineering: classification of ontology patterns. In: Proceedings of international conference on enterprise information systems (3):413–416Google Scholar
  7. 7.
    Chiticariu L, Hernández MA, Kolaitis PG, Popa L (2007) Semi-automatic schema integration in Clio. In: Proceedings of the 33rd international conference on very large data bases (VLDB ’07), Vienna, Austria, pp 1326–1329Google Scholar
  8. 8.
    Clancey WJ (1985) Heuristic classification. Artif Intell 27(3):289–350CrossRefGoogle Scholar
  9. 9.
    Clark P, Thompson J, Porter B (2000) Knowledge patterns. In: Proceedings of the 7th international conference on principles of knowledge representation and reasoning (KR2000), pp 591–600Google Scholar
  10. 10.
    Coplien JO (1996) Software patterns. SIGS Books, New YorkGoogle Scholar
  11. 11.
    de Bruijn J, Ehrig M, Feier C, Martin-Recuerda F, Scharffe F, Weiten M (2006) Ontology mediation, merging, and aligning. In: Davies J, Studer R, Warren P (eds) Semantic web technologies. Wiley, New YorkGoogle Scholar
  12. 12.
    Doan A, Halevy AY (2005) Semantic-integration research in the database community. AI Mag 26(1):83–94Google Scholar
  13. 13.
    Dorneles CF, Gonçalves R (2011) Approximate data instance matching: a survey. Knowl Inf Syst 27(1):1–21CrossRefGoogle Scholar
  14. 14.
    Euzenat J (2001) Towards a principled approach to semantic interoperability. In: Gomez-Perez A, Gruninger M, Stuckenschmidt H, Uschold M (eds) Proceedings of workshop on ontologies and information sharing, IJCAI’01Google Scholar
  15. 15.
    Euzenat J (2004) An API for ontology alignment. In: van Harmelen F, McIlraith S, Plexousakis D (eds) Proceedings of the 3rd international semantic web conference. Hiroshima, Japan, pp 698–712Google Scholar
  16. 16.
    Euzenat J, Scharffe F, Zimmermann A (2007) D2.2.10: Expressive alignment language and implementation. In: Project deliverable 2.2.10, Knowledge Web NoE (FP6-507482)Google Scholar
  17. 17.
    Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Heidelberg, p 341MATHGoogle Scholar
  18. 18.
    Falconer S M, Storey M-A D (2007) A cognitive support framework for ontology mapping. In: Proceedings of ISWC/ASWC, pp 114–127Google Scholar
  19. 19.
    Fensel D, Motta E, Benjamins VR, Crubezy M, Decker S, Gaspari M, Groenboom R, Grosso W, van Harmelen F, Musen M, Plaza E, Schreiber G, Studer R, Wielinga B (2002) The unified problem-solving method development language UPML. Knowl Inf Syst 5(1):83–131CrossRefGoogle Scholar
  20. 20.
    Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-oriented software. Addison-Wesley Longman, BostonGoogle Scholar
  21. 21.
    Gangemi A (2005) Ontology design patterns for semantic web content. In: Proceedings of the 4th international semantic web conference, pp 262–276Google Scholar
  22. 22.
    Ghazvinian A, Noy NF, Jonquet C, Shah NH, Musen NA (2009) What four million mappings can tell you about two hundred ontologies. In: Proceedings of the ISWC 2009. Springer, WashingtonGoogle Scholar
  23. 23.
    Groza T, Grimnes GAA, Handschuh S, Decker S (2011) From raw publications to Linked Data. Knowl Inf Syst 34:1–21Google Scholar
  24. 24.
    Gruber TR (1995) Toward principles for the design of ontologies used for knowledge sharing. Int J Hum Comput Stud 43(4–5):907–928CrossRefGoogle Scholar
  25. 25.
    Hu W, Qu Y (2008) Falcon-AO: a practical ontology matching system. J Web Semant 6(3):237–239CrossRefMathSciNetGoogle Scholar
  26. 26.
    Kalfoglou Y, Schorlemmer M (2003) Ontology mapping: the state of the art. Knowl Eng Rev 18(1):1–31CrossRefGoogle Scholar
  27. 27.
    Klein M (2001) Combining and relating ontologies: an analysis of problems and solutions. In: Proceedings of workshop on ontologies and information sharingGoogle Scholar
  28. 28.
    McGuinness DL, Fikes R, Rice J, Wilder S (2000) The chimaera ontology environment. In: Proceedings of the 17th national conference on artificial intelligence (AAAI 2000)Google Scholar
  29. 29.
    Melnik S, Rahm E, Bernstein PA (2003) Rondo: a programming platform for generic model management. In: Proceedings of SIGMOD 03Google Scholar
  30. 30.
    Miller RJ (2007) Retrospective on Clio: schema mapping and data exchange in practice. In: Proceedings of the (2007) international workshop on description logics (DL2007). Brixen-Bressanone, ItalyGoogle Scholar
  31. 31.
    Mocan A, Cimpian E, Kerrigan M (2006) Formal model for ontology mapping creation. In: Proceedings of the international semantic web conference (ISWC 2006), pp 459–472Google Scholar
  32. 32.
    Newell A (1982) The knowledge level. Artif Intell 18(1):87–127CrossRefGoogle Scholar
  33. 33.
    Noy NF, Griffith N, Musen MA (2008) Collecting community-based mappings in an ontology repository. In: Proceedings of international semantic web conference, pp 371–386Google Scholar
  34. 34.
    Noy NF, Musen MA (2000) PROMPT: algorithm and tool for automated ontology merging and alignment. In: Proceedings of the seventeenth national conference on artificial intelligence and twelfth conference on innovative applications of, artificial intelligence, pp 450–455Google Scholar
  35. 35.
    Oztemel E, Arslankaya S (2012) Enterprise knowledge management model: a knowledge tower. Knowl Inf Syst 31(1):171–192CrossRefGoogle Scholar
  36. 36.
    Le Phuoc D, Polleres A, Morbidoni C, Hauswirth M, Tummarello G (2009) Rapid semantic web mashup development through semantic web pipes. In: Proceedings of the 18th world wide web conference (WWW2009), Madrid, Spain, pp 581–590Google Scholar
  37. 37.
    Popa L, Velegrakis Y, Miller RJ, Hernández MA, Fagin R (2002) Translating web data. In: Proceedings of international conference on very large data bases (VLDB), pp 598–609Google Scholar
  38. 38.
    Presutti V, Daga E, Gangemi A, Salvati A (2008) http://ontologydesignpatterns.org [ODP]. In: Posters & demos session of the 7th international semantic web conference (ISWC 2008)
  39. 39.
    Presutti V, Gangemi A (2008) Content ontology design patterns as practical building blocks for web ontologies. In: Proceedings of international conference on conceptual modeling (ER), pp 128–141Google Scholar
  40. 40.
    Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB J 10(4):334–350CrossRefMATHGoogle Scholar
  41. 41.
    Rivero CR, Schultz A, Bizer C, Ruiz D (2012) Benchmarking the performance of linked data translation systems. In: Proceedings of linked data on the web (LDOW2012)Google Scholar
  42. 42.
    Salam A, Khayal MSH (2012) Mining top-k frequent patterns without minimum support threshold. Knowl Inf Syst 30(1):57–86CrossRefGoogle Scholar
  43. 43.
    Scharffe F (2009) Correspondence patterns representation. Ph.D Thesis, University of InnsbruckGoogle Scholar
  44. 44.
    Shvaiko P, Euzenat J (2005) A survey of schema-based matching approaches. J Data Semant IV:146–171Google Scholar
  45. 45.
    Shvaiko P, Euzenat J (2008) Ten Challenges for Ontology Matching. In: Proceedings of the 7th international conference on ontologies, dataBases, and applications of semantics (ODBASE 2008), pp 1164–1182Google Scholar
  46. 46.
    Staab S, Erdmann M, Maedche A (2001) Engineering ontologies using semantic patterns. In: Proceedings of the IJCAI-01 workshop on e-business & the intelligent web, Seattle, WA, USA, August 5, 2001Google Scholar
  47. 47.
    Šváb O (2007) Exploiting patterns in ontology mapping. In: Proceedings of the 6th international semantic web conference and 2nd Asian semantic web conference (ISWC/ASWC2007), Busan, South Korea, Springer, pp 950–954Google Scholar
  48. 48.
    Šváb-Zamazal S, Svátek V, Scharffe F (2009) Pattern-based ontology transformation service. In: Proceedings of the first international conference on knowledge engineering and ontology development (KEOD’09), Madeira, PortugalGoogle Scholar
  49. 49.
    Ullman JD (1997) Information integration using logical views. In: Proceedings of the 11th international conference on database theory (ICDT 2007), pp 19–40Google Scholar
  50. 50.
    Visser PRS, Jones DM, Bench-Capon TJM, Shave MJR, (1997) An analysis of ontological mismatches: heterogeneity versus interoperability. In: AAAI, (1997) spring symposium on ontological engineering, Stanford, USA, pp 164–172Google Scholar
  51. 51.
    Wache H (2003) Semantische Mediation für heterogene Informationsquellen. J Kuenstliche Intell 17(4):56–62Google Scholar
  52. 52.
    Wielinga BJ, Schreiber AT, Breuker JA (1992) KADS: a modelling approach to knowledge engineering. J Knowl Acquis 4(1):5–53CrossRefGoogle Scholar
  53. 53.
    Zhdanova AV, Shvaiko P (2006) Community-driven ontology matching. In: Proceedings of the 3rd European semantic web conference (ESWC 2006), pp 34–49Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • François Scharffe
    • 1
  • Ondřej Zamazal
    • 2
  • Dieter Fensel
    • 3
  1. 1.Institut National de Recherche, en Informatique et AutomatiqueMontpellierFrance
  2. 2.University of EconomicsPragueCzech Republic
  3. 3.University of InnsbruckInnsbruckAustria

Personalised recommendations