Knowledge and Information Systems

, Volume 33, Issue 3, pp 549–575 | Cite as

Threshold conditions for arbitrary cascade models on arbitrary networks

  • B. Aditya Prakash
  • Deepayan Chakrabarti
  • Nicholas C. Valler
  • Michalis Faloutsos
  • Christos Faloutsos
Regular Paper

Abstract

Given a network of who-contacts-whom or who-links-to-whom, will a contagious virus/product/meme spread and ‘take over’ (cause an epidemic) or die out quickly? What will change if nodes have partial, temporary or permanent immunity? The epidemic threshold is the minimum level of virulence to prevent a viral contagion from dying out quickly and determining it is a fundamental question in epidemiology and related areas. Most earlier work focuses either on special types of graphs or on specific epidemiological/cascade models. We are the first to show the G2-threshold (twice generalized) theorem, which nicely de-couples the effect of the topology and the virus model. Our result unifies and includes as special case older results and shows that the threshold depends on the first eigenvalue of the connectivity matrix, (a) for any graph and (b) for all propagation models in standard literature (more than 25, including H.I.V.). Our discovery has broad implications for the vulnerability of real, complex networks and numerous applications, including viral marketing, blog dynamics, influence propagation, easy answers to ‘what-if’ questions, and simplified design and evaluation of immunization policies. We also demonstrate our result using extensive simulations on real networks, including on one of the biggest available social-contact graphs containing more than 31 million interactions among more than 1 million people representing the city of Portland, Oregon, USA.

Keywords

Epidemics Cascades Virus propagation models Arbitrary graphs Tipping points 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert R, Jeong H, Barabási AL (2000) Error and attack tolerance of complex networks. Nature 407(6794): 378–482CrossRefGoogle Scholar
  2. 2.
    Anderson RM, May RM (1991) Infectious diseases of humans. Oxford University Press, OxfordGoogle Scholar
  3. 3.
    Barrat A, Barthélemy M, Vespignani A (2010) Dynamical processes on complex networks. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Barrett CL, Bisset KR, Eubank SG, Feng X, Marathe MV (2008) Episimdemics: an efficient algorithm for simulating the spread of infectious disease over large realistic social networks. In: ACM/IEEE conference on supercomputingGoogle Scholar
  5. 5.
    Bass FM (1969) A new product growth for model consumer durables. Manag Sci 15(5): 215–227MATHCrossRefGoogle Scholar
  6. 6.
    Bikhchandani S, Hirshleifer D, Welch I (1992) A theory of fads, fashion, custom, and cultural change in informational cascades. J Political Econ 100(5): 992–1026CrossRefGoogle Scholar
  7. 7.
    Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S (2010) Catastrophic cascade of failures in interdependent networks. Nature 464(7291): 1025–1028CrossRefGoogle Scholar
  8. 8.
    Castellano C, Pastor-Satorras R (2010) Thresholds for epidemic spreading in networks. Phys Rev Lett 105Google Scholar
  9. 9.
    Chakrabarti D, Leskovec J, Faloutsos C, Madden S, Guestrin C, Faloutsos M (2007) Information survival threshold in sensor and P2P networks. In: IEEE INFOCOMGoogle Scholar
  10. 10.
    Chakrabarti D, Wang Y, Wang C, Leskovec J, Faloutsos C (2008) Epidemic thresholds in real networks. ACM TISSEC 10(4)Google Scholar
  11. 11.
    Chen Q, Chang H, Govindan R, Jamin S, Shenker SJ, Willinger W (2002) The origin of power laws in internet topologies revisited. In: IEEE INFOCOMM. http://topology.eecs.umich.edu/data.html
  12. 12.
    Chen W, Wang C, Wang Y (2010) Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: KDDGoogle Scholar
  13. 13.
    Chung F, Lu L, Vu V (2003) Eigenvalues of random power law graphs. Ann Comb 7(1)Google Scholar
  14. 14.
    Cohen R, Havlin S, ben Avraham D (2003) Efficient immunization strategies for computer networks and populations. Phys Rev Lett 91(24): 247901CrossRefGoogle Scholar
  15. 15.
    Dodds PS, Watts DJ (2004) A generalized model of social and biological contagion. J Theor Biol 232: 587–604MathSciNetCrossRefGoogle Scholar
  16. 16.
    Easley D, Kleinberg J (2010) Networks, crowds, and markets: reasoning about a highly connected world. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  17. 17.
    Eubank S, Guclu H, Anil Kumar VS, Marathe MV, Srinivasan A, Toroczkai Z, Wang N (2004) Modelling disease outbreaks in realistic urban social networks. Nature 429(6988): 180–184CrossRefGoogle Scholar
  18. 18.
    Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships of the internet topology. In: SIGCOMM, pp 251–262Google Scholar
  19. 19.
    Ganesh A, Massoulié L, Towsley D (2005) The effect of network topology on the spread of epidemics. In: INFOCOMGoogle Scholar
  20. 20.
    Goldenberg J, Libai B, Muller E (2001) Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark Lett 3(12): 211–223CrossRefGoogle Scholar
  21. 21.
    Gomez Rodriguez M, Leskovec J, Krause A (2010) Inferring networks of diffusion and influence. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, New York, NY, USA (KDD ’10), pp 1019–1028Google Scholar
  22. 22.
    Granovetter M (1978) Threshold models of collective behavior. Am J Sociol 83(6): 1420–1443CrossRefGoogle Scholar
  23. 23.
    Gruhl D, Guha R, Liben-Nowell D, Tomkins A (2004) Information diffusion through blogspace. In: WWW ’04. http://www2004.org/proceedings/docs/1p491.pdf
  24. 24.
    Hayashi Y, Minoura M, Matsukubo J (2003) Recoverable prevalence in growing scale-free networks and the effective immunization. arXiv:cond-mat/0305549 v2Google Scholar
  25. 25.
    Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42Google Scholar
  26. 26.
    Hethcote HW, Yorke JA (1984) Gonorrhea transmission dynamics and control. Springer Lecture notes in biomathematics 46Google Scholar
  27. 27.
    Hirsch MW, Smale S (1974) Differential equations, dynamical systems and linear algebra. Academic Press, New YorkMATHGoogle Scholar
  28. 28.
    Horn RA, Johnson CR (1991) Topics in matrix analysis. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  29. 29.
    Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In: KDDGoogle Scholar
  30. 30.
    Kephart JO, White SR (1993) Measuring and modeling computer virus prevalence. In: IEEE computer society symposium on research in security and privacyGoogle Scholar
  31. 31.
    Kleinberg J (2007) The wireless epidemic. Nature 449Google Scholar
  32. 32.
    Kumar R, Novak J, Raghavan P, Tomkins A (2003) On the bursty evolution of blogspace. In: WWWGoogle Scholar
  33. 33.
    Lad M, Zhao X, Zhang B, Massey D, Zhang L (2003) Analysis of BGP update surge during slammer worm attack. In: 5th International workshop on distributed computing (IWDC). http://citeseer.ist.psu.edu/lad03analysis.html
  34. 34.
    Lappas T, Terzi E, Gunopoulos D Mannila H (2010) Finding effectors in social networks. In: SIGKDDGoogle Scholar
  35. 35.
    Leskovec J, Adamic LA, Huberman BA (2006) The dynamics of viral marketing. In: EC. ACM Press, New York, NY, USA, pp 228–237Google Scholar
  36. 36.
    Leskovec J, Backstrom L, Kleinberg J (2009) Meme-tracking and the dynamics of the news cycle. In: ACM SIGKDDGoogle Scholar
  37. 37.
    Maymounkov P, Mazières D (2002) Kademlia: a peer-to-peer information system based on the XOR metric. In: Revised papers from the first international workshop on peer-to-peer systems, Springer, London, UK (IPTPS ’01), pp 53–65. http://dl.acm.org/citation.cfm?id=646334.687801
  38. 38.
    McCuler CR (2000) The many proofs and applications of perron’s theorem. SIAM Rev 42Google Scholar
  39. 39.
    McKendrick AG (1926) Applications of mathematics to medical problems. In: Proceedings of Edin. Math. Society, vol 14, pp 98–130Google Scholar
  40. 40.
    Milnes HW (Aug–Sept 1963) Conditions that the zeros of a polynomial lie in the interval [−1, 1] when all zeros are real. Am Math Mon 70(7)Google Scholar
  41. 41.
    NDSSL (2007) Synthetic data products for societal infrastructures and protopopulations: data set 2.0. NDSSL-TR-07-003. http://ndssl.vbi.vt.edu/Publications/ndssl-tr-07-003.pdf
  42. 42.
    Newman MEJ (2002) Spread of epidemic disease on networks. Phys Rev E 66(1): 016128. doi:10.1103/PhysRevE.66.016128 MathSciNetCrossRefGoogle Scholar
  43. 43.
    Newman MEJ (2005) Threshold effects for two pathogens spreading on a network. Phys Rev Lett 95(10): 108701CrossRefGoogle Scholar
  44. 44.
    Pastor-Santorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86: 14CrossRefGoogle Scholar
  45. 45.
    Pathak N, Banerjee A, Srivastava J (2010) A generalized linear threshold model for multiple cascades. In: ICDMGoogle Scholar
  46. 46.
    Prakash BA, Tong H, Valler N, Faloutsos M, Faloutsos C (2010) Virus propagation on time-varying networks: theory and immunization algorithms. In: ECML-PKDDGoogle Scholar
  47. 47.
    Prakash BA, Beutel A, Rosenfeld R, Faloutsos C (2012) Winner takes all: competiting viruses or ideas on fair-play networks. In: WWWGoogle Scholar
  48. 48.
    Richardson M, Domingos P (2002) Mining knowledge-sharing sites for viral marketing. In: SIGKDDGoogle Scholar
  49. 49.
    Rogers EM (2003) Diffusion of innovations, 5th ed. Free Press. http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0743222091
  50. 50.
    Saito K, Kimura M, Ohara K, Motoda H (2012) Efficient discovery of influential nodes for sis models in social networks. Knowl Inf Syst (KAIS) 30(3): 613–635CrossRefGoogle Scholar
  51. 51.
    Vojnovic M, Gupta V, Karagiannis T, Gkantsidis C (2008) Sampling strategies for epidemic-style information dissemination. In: IEEE INFOCOMGoogle Scholar
  52. 52.
    Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393: 440–442CrossRefGoogle Scholar
  53. 53.
    Website (November 15, 2011) Mainline bittorrent website. http://www.bittorrent.com/
  54. 54.
    Zhao J, Wu J, Feng X, Xiong H, Xu K (2011) Information propagation in online social networks: a tie-strength perspective. Knowl Inf Syst 1–20. doi:10.1007/s10115-011-0445-x

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • B. Aditya Prakash
    • 1
  • Deepayan Chakrabarti
    • 2
  • Nicholas C. Valler
    • 3
  • Michalis Faloutsos
    • 3
  • Christos Faloutsos
    • 4
  1. 1.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA
  2. 2.Yahoo! ResearchSanta ClaraUSA
  3. 3.University of CaliforniaRiversideUSA
  4. 4.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations