Advertisement

Knowledge and Information Systems

, Volume 37, Issue 2, pp 331–362 | Cite as

How you move reveals who you are: understanding human behavior by analyzing trajectory data

  • Chiara RensoEmail author
  • Miriam Baglioni
  • Jose António F. de Macedo
  • Roberto Trasarti
  • Monica Wachowicz
Regular paper

Abstract

The widespread use of mobile devices is producing a huge amount of trajectory data, making the discovery of movement patterns possible, which are crucial for understanding human behavior. Significant advances have been made with regard to knowledge discovery, but the process now needs to be extended bearing in mind the emerging field of behavior informatics. This paper describes the formalization of a semantic-enriched KDD process for supporting meaningful pattern interpretations of human behavior. Our approach is based on the integration of inductive reasoning (movement pattern discovery) and deductive reasoning (human behavior inference). We describe the implemented Athena system, which supports such a process, along with the experimental results on two different application domains related to traffic and recreation management.

Keywords

Behavior inference Trajectory data mining GPS data Ontologies Pattern classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal R, Gunopulos D, Leymann F (1998) Mining Process Models from Workflow Logs. In: Ramos I, Alonso G, Schek H-J, Saltor F (eds) Advances in database technology—EDBT’98: sixth international conference on extending database technology. Springer, Valencia, pp 469–483Google Scholar
  2. 2.
    Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large databases. In: Buneman P, Jajodia S (eds) Proceedings of the 1993 ACM SIGMOD international conference on management of data. ACM, Washington, pp 207–216CrossRefGoogle Scholar
  3. 3.
    Ankerst M, Breunig MM, Kriegel H et al (1999) OPTICS: ordering points to identify the clustering structure. In: Delis A, Faloutsos C, Ghandeharizadeh S (eds) SIGMOD 1999, proceedings ACM SIGMOD international conference on management of data. ACM Press, Philadelphia, pp 49–60CrossRefGoogle Scholar
  4. 4.
    Antunes C (2007) Onto4AR: a framework for mining association rules. In: Nijssen S, De Raedt L (eds) International workshop on constraint-based mining and learning (CMILE—ECML/PKDD 2007). Warsaw, September 2007Google Scholar
  5. 5.
    Baader, F, Calvanese, D, McGuinness, DL, Nardi, D, Patel-Schneider, PF (eds) (2003) The description logic handbook: theory, implementation, applications. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Baglioni M, de Macedo J, Renso C et al (2008) An ontology-based approach for the semantic modelling and reasoning on trajectories. In: Il-Yeol Sang et al (eds) Advances in conceptual modeling-challenges and opportunities ER 2008 workshops proceedings (SeCoGIS 2008). Springer, Barcelona, Spain, October 20–23, pp 344–353Google Scholar
  7. 7.
    Baglioni M, de Macêdo JAF, Renso C et al (2009) Towards Semantic Interpretation of Movement Behavior. In: Sester M, Bernard L, Paelke V (eds) Advances in GIScience, proceedings of the 12th AGILE conference. Springer, Hannover, Germany, pp 271–288Google Scholar
  8. 8.
    Bellandi A, Furletti B, Grossi V et al (2007) Ontology-driven association rules extraction: a case of study. In: Bouquet P, Euzenat J, Ghidini C, McGuinness D, Serafini L, Shvaiko P, Wache H (eds) Proceedings of the international workshop on context and ontologies representation and reasoning (C&O:RR) collocated with the 6th international and interdisciplinary conference on modelling and using context (CONTEXT-2007). Roskilde, Denmark, August 21st, 2007Google Scholar
  9. 9.
    Bogorny V, Kuijper B, Alvaresz LO (2009) ST-DMQL: a semantic trajectory data mining query language. IJGIS 23(10): 1245–1276Google Scholar
  10. 10.
    Bogorny V, Wachowicz M (2009) A framework for context-aware trajectory. In: Cao L, Yu PS, Zhang C, Zhang H (eds) Data mining for business applications. Springer, USA, pp 225–239CrossRefGoogle Scholar
  11. 11.
    Cao L, Huang JZ, Bailey J et al. (eds) (2011) New frontiers in applied data mining PAKDD 2011 international workshops (behavior informatics 2011 (BI2011) in conjunction with the 15th pacific-asia conference on knowledge discovery and data mining (PAKDD2011)). Springer, LNAI 7104Google Scholar
  12. 12.
    Cao, L, Yu, PS (eds) (2012) Behavior computing modeling, analysis, mining and decision. Springer, BerlinGoogle Scholar
  13. 13.
    Cao, L, Yu, PS, Zhang, C (eds) et al (2009) Data mining for business applications. Springer, BerlinGoogle Scholar
  14. 14.
    Cao L, Yu PS, Zhang C et al (2010) Domain driven data mining. Springer Hardcover, BerlinCrossRefzbMATHGoogle Scholar
  15. 15.
    Cavus O, Aksoy S (2008) Semantic Scene Classification for Image Annotation and Retrieval. In: da Vitoria Lobo N, Roli F, Kwok JT, Anagnostopoulos GC, Loog M (eds) Proceeding of the 2008 joint IAPR international workshop on structural, syntactic, and statistical pattern recognition, (also in Lecture Notes in Computer Science, volume 5342). Springer, Orlando, pp 402–410Google Scholar
  16. 16.
    Chen K, Liu L (2010) Geometric data perturbation for privacy preserving outsourced data mining. Knowl Inf Syst 29:3: 657–695Google Scholar
  17. 17.
    Cui J, Liu H, He J et al (2011) TagClus: a random walk-based method for tag clustering. Knowl Inf Syst 27:2: 193–225CrossRefGoogle Scholar
  18. 18.
    Dodge S, Weibel R, Lautenschultz A-K (2008) Towards a taxonomy of movement patterns. Inf Visalizat 7(3–4): 240–252CrossRefGoogle Scholar
  19. 19.
    Fayyad UM, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery: an overview. In: Fayyad UM, Piatesky-Shapiro G, Smyth P, Uthurusamy R (eds) Advances in knowledge discovery and data mining. AAAI/MIT Press, Cambridge, pp 1–34Google Scholar
  20. 20.
    Feng S, Wang D, Yu G et al (2011) Extracting common emotions from blogs based on fine-grained sentiment clustering. Knowl Inf Syst 27(2): 281–302MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Giannotti F, Nanni M, Pinelli F et al (2007) Trajectory pattern mining. In: Berkhin P, Caruano R, Wu X (eds) Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining. ACM 2007, San Jose California, pp 330–339Google Scholar
  22. 22.
    Giannotti F, Nanni M, Pedreschi D et al (2011) Unveiling the complexity of human mobility by querying and mining massive trajectory data. VLDB Journal Special issue on Data Management for Mobile ServicesGoogle Scholar
  23. 23.
    Giannotti, F, Pedreschi, D (eds) (2008) Mobility, data mining, and privacy: geographic knowledge discovery. Springer, BerlinGoogle Scholar
  24. 24.
    Gottgtroy P, Modaini R, Kasabov N et al (2003) Building evolving ontology maps for data mining and knowledge discovery in biomedical informatics. In: Proceedings of the third Brazilian symposium on mathematical and computational biology (BIOMATIII), Rio de Janeiro, Brazil, vol 1, pp 309–328Google Scholar
  25. 25.
    Gruber TR (2008) Ontology. In: Ling L, Tamer Özsu M (eds) Entry in the encyclopedia of database systems. Springer, BerlinGoogle Scholar
  26. 26.
    Guarino N, Oberle D, Staab S (2009) What is an ontology?. In: Staab S, Studer R (eds) Handbook on ontologies. Springer, Berlin, pp 1–17CrossRefGoogle Scholar
  27. 27.
    Güting R, Schneider M (2005) Moving objects databases. Morgan Kaufmann, Los AltosGoogle Scholar
  28. 28.
    Hägerstrand T (1970) What about people in regional science?. Pap Reg Sci 24(1): 6–21CrossRefGoogle Scholar
  29. 29.
    Laube P, Imfeld S (2002) Analyzing relative motion within groups of trackable moving point objects. In: Egenhofer MJ, Mark DM (eds) Proceedings of the second international conference on geographic information science LNCS 2478. Springer, Boulder, pp 132–144Google Scholar
  30. 30.
    Laube P, van Kreveld M, Imfeld S (2004) Finding REMO—detecting relative motion patterns in geospatial lifelines. In: Fisher P (ed) Developments in spatial data handling, 11th international symposium on spatial data handling. Springer, Berlin, pp 201–214Google Scholar
  31. 31.
    Kietz J, Serban F, Bernstein A et al (2010) Data Mining Workflow Templates for Intelligent Discovery Assistance and Auto-Experimentation. In: Hilario M, Lavrac N, Kok JN (eds) Proceedings of the ECML/PKDD10 workshop on third generation data mining: towards service-oriented knowledge discovery (SoKD10). Barcelona, Spain, pp 1–12Google Scholar
  32. 32.
    van Marwijk R, Pitt DG (2008) Where Dutch recreationists walk: Path design, physical features and walker usage. In: Raschi A, Tamperi S (eds) Proceedings fourth international conference on monitoring and management of visitor flows in recreational and protected areas. Management for Protection and Sustainable Development, Montecatini Terme, Italy, pp 428–432Google Scholar
  33. 33.
    Monreale A, Trasarti R, Renso C et al (2011) C-safety: a framework for the anonymization of semantic trajectories. Trans Data Privacy 4:2: 73–101MathSciNetGoogle Scholar
  34. 34.
    Nanni M, Kuijpers B, Korner C et al (2008) Spatiotemporal data mining. In: Giannotti F, Pedreschi D (eds) Mobility, data mining, and privacy: geographic knowledge discovery. Springer, BerlinGoogle Scholar
  35. 35.
    Nanni M, Trasarti R (2009) K-BestMatch reconstruction and comparison of trajectory data. In: Saygin Y, Yu JX, Kargupta H, Wang W et al (eds) ICDM workshops 2009 international workshop on spatio and spatio temporal data mining in cooperation with IEEE—ICDM 2009. IEEE Computer Society 2009, Miami, pp 610–615Google Scholar
  36. 36.
    Nanni M, Trasarti R, Renso C et al (2010) Advanced knowledge discovery on movement data with the GeoPKDD system. In: Manolescu I, Spaccapietra S, Teubner J, Kitsuregawa M, Léger A, Naumann F, Ailamaki A, Ozcan F (eds) EDBT 2010. ACM, Lausanne, pp 693–696Google Scholar
  37. 37.
    Nigro, HO, Gonzalez Cisaro, SE, Xodo, DH (eds) (2008) Data mining with ontologies: implementations, findings and frameworks. IGI Global, HersheyGoogle Scholar
  38. 38.
    Ortale R, Ritacco E, Pelekis N et al (2008) The DAEDALUS framework: progressive querying and mining of movement data. In: Aref WG, Mokbel MF, Schneider M (eds) Proceedings of the 16th ACM SIGSPATIAL international symposium on advances in geographic information systems. ACM-GIS, Irvine, pp 52:1–52:4Google Scholar
  39. 39.
    Pelekis N, Kopanakis I, Kotsifakos E et al (2011) Clustering uncertain trajectories. Knowl Inf Syst 28(1): 117–147CrossRefGoogle Scholar
  40. 40.
    Pelekis N, Theodoridis Y (2006) Boosting location-based services with a moving object database engine. In: Chrysanthis PK, Jensen CS, Kumar V, Labrinidis A (eds) Proceedings of the 5th ACM international workshop on data engineering for wireless and mobile access. ACM, Chicago, pp 3–10Google Scholar
  41. 41.
    Reeve L, Han H (2005) Survey of semantic annotation platforms. In: Haddad H, Liebrock LM, Omicini A, Wainwright RL (eds) Proceedings of the 2005 ACM symposium on applied computing, SAC ’05. ACM, New York, pp 1634–1638Google Scholar
  42. 42.
    Rinzivillo S, Pedreschi D, Nanni M et al (2008) Visually-driven analysis of movement data by progressive clustering. Inf Visual 7(3/4): 225–239CrossRefGoogle Scholar
  43. 43.
    Romei A, Turini F (2011) Inductive database languages: requirements and examples. Knowl Inf Syst 26:3: 351–384CrossRefGoogle Scholar
  44. 44.
    Song C, Qu Z, Blumm N et al (2010) Limits of predictability in human mobility. Science 19 327(5968): 1018–1021MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Spaccapietra S, Parent C, Damiani ML et al (2008) A conceptual view on trajectories. Data Knowl Eng J 65:1: 126–146CrossRefGoogle Scholar
  46. 46.
    Spinsanti L, Celli F, Renso C (2010) Where you stop is who you are: understanding peoples’ activities. In: Gottfried B, Aghajan H (eds) Proceedings of the 5th workshop on behaviour monitoring and interpretation—user modelling. Karlsruhe, GermanyGoogle Scholar
  47. 47.
    Trasarti R, Pinelli F, Nanni M et al (2011) Mining mobility user profiles for car pooling. In: Aptè C, Ghosh J, Smyth P (eds) Proceedings of the 17th ACM SIGKDD conference on knowledge discovery and data mining. ACM, San Diego, pp 1190–1198CrossRefGoogle Scholar
  48. 48.
    Uren V, Cimiano P, Iria J et al (2006) Semantic annotation for knowledge management: requirements and a survey of the state of the art. J Web Semant 4(1): 14–28CrossRefGoogle Scholar
  49. 49.
    Valente A, Breuker J (1996) Towards principled core ontologies. In: Gaines BR, Mussen M (eds) Proceedings of the KAW-96. BanffGoogle Scholar
  50. 50.
    Yan Z (2009) Towards semantic trajectory data analysis: a conceptual and computational approach. In: Gigaux P, Senellrt P (eds) Proceedings of the VLDB 2009 PhD workshop co-located with the 35th international conference on very large data bases (VLDB 2009). VLDB Endowment, Lyone, FranceGoogle Scholar
  51. 51.
    Yan Z, Parent C, Spaccapietra S et al (2010) A hybrid model and computing platform for spatio-semantic trajectories. In: Aroyo L, Antoniou G, Hyvönen E, Teije A, Stuckenschmidt H, Cabral L, Tudorache T (eds) The semantic web: research and applications. Springer, Berlin, pp 60–75CrossRefGoogle Scholar
  52. 52.
    Wachowicz M, Ong R, Renso C et al (2011) Finding moving flock patterns among pedestrians through spatio-temporal coherence. Int J GIS 25(11): 1849–1864Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Chiara Renso
    • 1
    Email author
  • Miriam Baglioni
    • 2
  • Jose António F. de Macedo
    • 3
  • Roberto Trasarti
    • 1
  • Monica Wachowicz
    • 4
  1. 1.KDDLab, ISTI-CNRPisaItaly
  2. 2.IIT-CNRPisaItaly
  3. 3.Federal University of Ceara’FortalezaBrazil
  4. 4.University of New BrunswickFrederictonCanada

Personalised recommendations