Advertisement

Knowledge and Information Systems

, Volume 32, Issue 3, pp 589–608 | Cite as

Information propagation in online social networks: a tie-strength perspective

  • Jichang Zhao
  • Junjie Wu
  • Xu Feng
  • Hui Xiong
  • Ke Xu
Regular Paper

Abstract

In this paper, we investigate the relationship between the tie strength and information propagation in online social networks (OSNs). Specifically, we propose a novel information diffusion model to simulate the information propagation in OSNs. Empirical studies through this model on various real-world online social network data sets reveal three interesting findings. First, it is the adoption of the information pushing mechanism that greatly facilitates the information propagation in OSNs. Second, some global but cost-intensive strategies, such as selecting the ties of higher betweenness centralities for information propagation, no longer have significant advantages. Third, the random selection strategy is more efficient than selecting the strong ties for information propagation in OSNs. Along this line, we provide further explanations by categorizing weak ties into positive and negative ones and reveal the special bridge effect of positive weak ties. The inverse quantitative relationship between weak ties and network clustering coefficients is also carefully studied, which finally gives reasonable explanations to the above findings. Finally, we give some business suggestions for the cost-efficient and secured information propagation in online social networks.

Keywords

Online social networks Information diffusion/propagation Tie strength Social synchrony 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahn YY, Han S, Kwak H, Moon S, Jeong H (2007) Analysis of topological characteristics of huge online social networking services. In: Proceedings of the 16th international conference on world wide web, WWW ’07, pp 835–844Google Scholar
  2. 2.
    Benevenuto F, Rodrigues T, Cha M, Almeida V (2009) Characterizing user behavior in online social networks. In: Proceedings of the 9th ACM SIGCOMM conference on internet measurement conference, IMC ’09, pp 49–62Google Scholar
  3. 3.
    Bonneau J, Anderson J, Anderson R, Stajano F (2009) Eight friends are enough: social graph approximation via public listings. In: Proceedings of the second ACM EuroSys workshop on social network systems, SNS ’09, pp 13–18Google Scholar
  4. 4.
    Bonneau J, Anderson J, Danezis G (2009) Prying data out of a social network. In: Proceedings of the 2009 international conference on advances in social network analysis and mining, pp 249–254Google Scholar
  5. 5.
    Centola D, Eguíluz VM, Macy MW (2007) Cascade dynamics of complex propagation. Physica A Stat Mech Appl 374(1): 449–456CrossRefGoogle Scholar
  6. 6.
    Centola D, Macy M (2007) Complex contagions and the weakness of long ties. Am J Sociol 113(3): 702–734CrossRefGoogle Scholar
  7. 7.
    Cha M, Mislove A, Gummadi KP (2009) A measurement-driven analysis of information propagation in the flickr social network. In: Proceedings of the 18th international conference on world wide web, WWW ’09, pp 721–730Google Scholar
  8. 8.
    Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’09, pp 199–208Google Scholar
  9. 9.
    Chen W, Yuan Y, Zhang L (2010) Scalable influence maximization in social networks under the linear threshold model. In: Proceedings of the 2010 IEEE international conference on data mining, ICDM ’10, pp 88–97Google Scholar
  10. 10.
    De Choudhury M, Sundaram H, John A, Seligmann DD (2009) Social synchrony: predicting mimicry of user actions in online social media. In: Proceedings of the 2009 international conference on computational science and engineering, vol 04, pp 151–158Google Scholar
  11. 11.
    Dorogovtsev S, Mendes J (2002) Evolution of networks. Adv Phys 51: 1079–1187CrossRefGoogle Scholar
  12. 12.
    Eric S, Itamar R, Cameron AM, Thomas ML (2009) Gesundheit! modeling contagion through facebook news feed. In: 3rd international conference on weblogs and social media (ICWSM), pp 146–153Google Scholar
  13. 13.
  14. 14.
    Gao C, Liu J, Zhong N (2011) Network immunization and virus propagation in email networks: experimental evaluation and analysis. Knowl Inf Syst 27(2): 253–279MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gilbert E, Karahalios K (2009) Predicting tie strength with social media. In: Proceedings of the 27th international conference on human factors in computing systems, CHI ’09, pp 211–220Google Scholar
  16. 16.
    Granovetter MS (1973) The strength of weak ties. Am J Sociol 78(6): 1360–1380CrossRefGoogle Scholar
  17. 17.
    Granovetter MS (1978) Threshold models of collective behavior. Am J Sociol 83(6): 1420–1443CrossRefGoogle Scholar
  18. 18.
    Guo L, Tan E, Chen S, Zhang X, Zhao YE (2009) Analyzing patterns of user content generation in online social networks. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’09, pp 369–378Google Scholar
  19. 19.
    Goldenberg J, Libai B, Muller E (2001) Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark Lett 12(3): 211–223CrossRefGoogle Scholar
  20. 20.
    Kazumi S, Masahiro K, Hiroshi M (2009) Discovering influential nodes for sis models in social networks. Discov Sci 5808: 302–316CrossRefGoogle Scholar
  21. 21.
    Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’03, pp 137–146Google Scholar
  22. 22.
    Kimura M, Saito K, Motoda H (2009) Blocking links to minimize contamination spread in a social network. ACM Trans Knowl Discov Data 3: 9:1–9:23CrossRefGoogle Scholar
  23. 23.
    Korolova A, Motwani R, Nabar SU, Xu Y (2008) Link privacy in social networks. In: Proceeding of the 17th ACM conference on Information and knowledge management, CIKM ’08, pp 289–298Google Scholar
  24. 24.
  25. 25.
    Mislove A, Marcon M, Gummadi KP, Druschel P, Bhattacharjee B (2007) Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM conference on internet measurement, IMC ’07, pp 29–42Google Scholar
  26. 26.
  27. 27.
    Newman M, Park J (2003) Why social networks are different from other types of networks. Phys Rev E 68(3): 036–122CrossRefGoogle Scholar
  28. 28.
    Onnela JP, Saramaki J, Hyvonen J, Szabo G, Lazer D, Kaski K, Kertesz J, Barabási AL (2007) Structure and tie strengths in mobile communication networks. PNAS 104(18): 7332–7336CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Saito K, Kimura M, Ohara K, Motoda H (2011) Efficient discovery of influential nodes for sis models in social networks. Knowl Inf Syst. doi: 10.1007/s10115-011-0396-2
  31. 31.
    Shi X, Zhu J, Cai R, Zhang L (2009) User grouping behavior in online forums. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’09, pp 777–786Google Scholar
  32. 32.
    Traud AL, Kelsic ED, Mucha PJ, Porter MA (2008) Comparing community structure to characteristics in online collegiate social networks. ArXiv e-prints, arXiv0809.0690Google Scholar
  33. 33.
  34. 34.
    Viswanath B, Mislove A, Cha M, Gummadi KP (2009) On the evolution of user interaction in facebook. In: Proceedings of the 2nd ACM workshop on online social networks, WOSN ’09, pp 37–42Google Scholar
  35. 35.
    Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393: 440–442CrossRefGoogle Scholar
  36. 36.
    Yang J, Leskovec J (2010) Modeling information diffusion in implicit networks. In: Proceedings of the 2010 IEEE international conference on data mining, ICDM ’10, pp 599–608Google Scholar
  37. 37.
    Ying X, Wu X (2011) On link privacy in randomizing social networks. Knowl Inf Syst 28(3): 645–663CrossRefGoogle Scholar
  38. 38.
    Zhao J, Wu J, Xu K (2010) Weak ties: subtle role of information diffusion in online social networks. Phys Rev E 82(1): 016–105CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Jichang Zhao
    • 1
  • Junjie Wu
    • 2
  • Xu Feng
    • 1
  • Hui Xiong
    • 3
  • Ke Xu
    • 1
  1. 1.State Key Laboratory of Software Development EnvironmentBeihang UniversityBeijingChina
  2. 2.School of Economics and ManagementBeihang UniversityBeijingChina
  3. 3.Rutgers Business SchoolRutgers UniversityNew BrunswickUSA

Personalised recommendations